
A Measure Theoretic Approach to Image
Segmentation Framed in Terms of Intensities

Bachelor’s Thesis

based on the course Numerische Mathematik I

Institut für Mathematik und wissenschaftliches Rechnen
Universität Graz

Daniel Kraft

Supervisor: a.o. Univ.-Prof. Mag. Dr. Stephen Keeling

Abstract

For the case of gray-scale images, we will formulate the problem of image segmentation based
on the distribution of intensities in the image interpreted in a probabilistic sense. This leads to
a finite-dimensional optimization problem, for which the optimality system will be derived and
discussed. Application of a fixed-point iteration to this system leads to the well-known k-means
clustering algorithm, for which this therefore is a measure theoretic justification and derivation. The
reformulation also enables very efficient computation for common image representations, where the
time-complexity does not depend on the image’s size. Finally, the effect of random noise added to
the original image will be discussed; this fits in naturally with the probabilistic framework and it
will be shown that a noisy image satisfies nice smoothness conditions.

September 1st, 2010

Contents

1 Introduction 3

2 Topological Derivatives, “Best” Segmentations 5

3 The Distribution and Cost Functions 8
3.1 Distribution . 8
3.2 Cost Function . 9
3.3 Examples . 10

4 Solving the Optimality System 12
4.1 Continuity and Differentiability . 12
4.2 Optimality Condition . 13
4.3 Fixed-Point Iteration . 14
4.4 Sequential Construction of the Fixed-Point . 16
4.5 Non-Unique Fixed-Points . 18

5 Adding Noise to the Image 20

6 Remarks about Implementation 23
6.1 Preparations . 23
6.2 dp Integrals . 23
6.3 Fixed-Point Iteration . 25
6.4 Sequential Construction of a Fixed-Point . 26
6.5 Finding Fixed-Points Summarized . 27
6.6 Adding Noise . 28

7 Computational Results 30

8 Conclusion 34

2

1 Introduction

In mathematical image processing, an image can be modeled as a function that maps some domain Ω,
that is a subset of the plane R2 for an “image” in the classical sense, to “colours” or intensities. In my
thesis, I will only consider the case of gray-scale images, i.e., some interval I ⊂ R as range. The elements
of I are the possible intensities for points of the image; usually they are represented in the applications
either as floating-point numbers in the range [0, 1] or integer numbers in some range [0, 2n− 1]. So I will
further require that I is bounded and can thus be represented as compact interval of real numbers. In
addition, I need some technical requirements with regards to measurability.

Definition 1. Let (X,F , µ) be a measurable space (typically, (R2,L, λ) with λ being the two-dimensional
Lebesgue measure), Ω ∈ F with |Ω| < ∞ (finite measure) and u : Ω → R a bounded mapping. Note
that for brevity, |A| will denote µ(A) for A ∈ F . For a subset ω ⊂ Ω, we say that its image under u is
u (ω) = {u(x) | x ∈ ω}; similarly, for J ⊂ I, its preimage is u−1 (J) = {x ∈ Ω | u(x) ∈ J}.

Let u be measurable (i.e., for all Borel-sets B ∈ B with B ⊂ I we have u−1 (B) ∈ F) and define
I− = inf u (Ω) and I+ = supu (Ω). As u is bounded, clearly −∞ < I− ≤ I+ < ∞. u is said to be an
image on Ω with intensities in I = [I−, I+], if I− < I+ and for all I− < t < I+ we have∣∣u−1

(
[I−, t]

)∣∣ 6= 0 6=
∣∣u−1

(
[t, I+]

)∣∣ . (1)

If u, u′ : Ω → I are two images with u = u′ almost everywhere (i.e., |{x ∈ Ω | u(x) 6= u′(x)}| = 0),
I’ll identify u and u′, considering them to represent the same image. Thus strictly speaking, each image
will mean the equivalence class of all functions identified with it. Note that by this identification, we
can without loss of generality assume that for each bounded mapping u Equation 1 holds. The other
condition imposed in Definition 1, namely I− < I+, just excludes the trivial case of a constant u which
will not be considered in the following.

Now we can formulate and show the following easy technical result. For this, recall that L2 (Ω, I)
is the space of equivalence classes of Lebesgue square-integrable functions mapping Ω → I. This is a
Banach-space with the norm

‖f‖L2 =
(∫

Ω

|f |2 dµ

) 1
2

.

See [3, p. 80ff] for more details and [3, p. 85, 2.4.11] for a proof of completeness.

Lemma 1. Let u : Ω→ I be an image. Then u ∈ L2 (Ω, I).

Proof. Per definition, u is an equivalence class of Lebesgue measurable functions mapping Ω → I.
Because

∫
Ω
|u|2 dµ ≤ |Ω|maxt∈I |t|2 <∞, the assertion follows.

Given an image, the process of segmentation tries to divide its domain into a small number of sub-
domains in such a way that they correspond as well as possible to qualitatively distinct areas in the
image. Those areas may be associated to separate objects depicted in the image, for instance, but
are usually meant to be of a more or less uniform intensity. Thus more strictly, segmentation can be
understood as looking for an approximation to the image u by a step-function s. My goal in this work
is to derive a way to find a good such approximation s for a given image u.

Definition 2. Let u : Ω → I be an image and M ∈ N+. Then a M segment segmentation of u is a
step-function s : Ω→ I of the form

s =
M∑
i=1

ciχΩi ,

where ci ∈ I are the segment intensities, Ω1, . . . ,ΩM is a partition of Ω (i.e., Ω is the disjoint union of
all Ωi and all Ωi are non-empty) and χΩi denotes the characteristic function of Ωi, where

χA(x) =
{

1 x ∈ A
0 x 6∈ A

for some set A ⊂ Ω. The sets Ωi will be called the segments of u in this segmentation. This segmentation
s can also be specified as the set {(Ω1, c1), . . . , (Ωn, cM)}, which means the same thing. In addition to
requiring Ωi 6= ∅, we will further require that |Ωi| > 0 for all i, as changes on a set of measure zero are
not interesting.

3

(a) Original image. (b) Noisy image.

(c) Segmentation 1. (d) Segmentation 2. (e) Segmentation 3.

Figure 1: Basic example of image segmentations.

For two segmentations s, s′ of the image u, we say that s is better than s′ iff ‖s− u‖L2 < ‖s′ − u‖L2 .
In this way, we can clearly define a total ordering on the family of all segmentations of u. I’ll refer to
the dimension-less constant

ε =
‖s− u‖L2

‖u‖L2

as the quality or relative error of the segmentation s of an image u later on.

Image segmentation has a wide variety of applications in image processing, both as a step that is
useful on its own, but also as regularization inside some larger processing-algorithm, as in [8]. See also
[4, ch. 4].

Given just a partition of Ω as Ω1, . . . ,ΩM , it seems intuitive to define ci as some “mean value” of u
over the set Ωi for i = 1, . . . ,M to get a full segmentation. This will be discussed later in more detail
(see Theorem 2), but let it suffice for now to state this informally.

Finally, in Figure 1 I’ve assembled some examples about image segmentation. Figure 1a is an original
black-and-white image, which got corrupted by noise in Figure 1b. In the bottom row, I’ve shown three
different segmentations of Figure 1b with two segments each, where the segment intensities are always
the mean values over the two sub-domains, but the choice of sub-domains is different.

For Figure 1c, the two sub-domains are the ones in the original image; naturally, this segmentation
looks quite similar to the original. The relative error is 0.22. In Figure 1d, the sub-domains are obviously
poorly chosen, but this is still a possible segmentation (although not a very good one, the relative error
is 0.39). The sub-domains in Figure 1e are chosen such that pixels with intensity in [0, 1

2] are in one and
those with intensity in (1

2 , 1] in the other. This is also a reasonable choice, and its relative error is only
0.18, so by this criterion the best segmentation.

Most will probably agree that the “natural” segmentation is nevertheless Figure 1c because the noisy
image still clearly consists of a circle on a background, and thus the artefact pixels in Figure 1e seem
unnatural. But to notice this, one has to consider the image as a whole and take geometric properties
of the segments into consideration (like trying to regularize their boundaries). My definition of segment
quality and also the considerations in the following are by contrast purely based on the intensities of
the individual pixels, no matter how those pixels are situated relative to each other. This is motivated
by the concept of topological derivatives which will be described in Section 2 below, but there are also
segmentation strategies that, e.g., penalize irregular segment boundaries to avoid effects like this; see for
instance [7, p. 18ff].

4

2 Topological Derivatives, “Best” Segmentations

As a next step, I will try to characterize “best” segmentations (in the sense of the ordering in Definition 2).
First, let’s consider a given partition of the image domain Ω1, . . . ,ΩM ; then we can find an easy (and
intuitive) result about the optimal intensities ci in this case (see also [7, p. 4]):

Theorem 2. Let u : Ω→ I be an image and Ω1, . . . ,ΩM a partition of Ω with |Ωi| > 0 for i = 1, . . . ,M .
Then {(Ωi, ci) | i = 1, . . . ,M} with

ci =
1
|Ωi|

∫
Ωi

u dµ (2)

has the best quality among all segmentations {(Ωi, di) | i = 1, . . . ,M} for d1, . . . , dM ∈ I. The optimal
intensities ci are the unique minimizer.

Proof. Let F : RM → R be the function mapping a set of intensities (c1, . . . , cM) to the square of the
corresponding segmentation error, i.e.,

F (c1, . . . , cn) =
M∑
i=1

∫
Ωi

(u− ci)2 dµ.

Note that the ci need not be in I for the definition of F , thus F can be defined on the whole of RM . Then
clearly the segmentation with intensities (c1, . . . , cM) is better than that with intensities (d1, . . . , dM),
iff F (c1, . . . , cM) < F (d1, . . . , dM). Thus we have to prove that the choice of ci according to Equation 2
minimizes F . F is obviously a twice continuously differentiable function, and we get

∂F

∂ci
= −2

(∫
Ωi

u dµ− ci |Ωi|
)

.

Thus ∇F = 0 if and only if ci satisfies Equation 2 for all i, so this is the only critical point. To establish
that it actually is a minimum, consider the Hessian of F . The second partial derivatives are

∂2F

∂cj∂ci
= 2 |Ωi| δij ,

thus the Hessian is diagonal and positive definite, since |Ωi| is assumed to be positive for all i = 1, . . . ,M .

It should be intuitively clear that splitting a segment will result in a new segmentation with quality
at least as good, which is formalized as follows:

Lemma 3. Let {(Ωi, ci) | i = 1, . . . ,M} be a segmentation and let Ωj = A∪̇B be the disjoint union of
two non-empty sets A and B with |A| 6= 0 6= |B|. Then there exists a segmentation with the sub-domains
Ω1, . . . ,Ωj−1, A, B,Ωj+1, . . . ,ΩM that has quality at least as good.

Proof. If we define the new segmentation as {(Ωi, ci) | i 6= j} ∪ (A, cj)∪ (B, cj), this is clearly equivalent
to the original segmentation in terms of quality. Note however, that in general this segmentation has not
optimal intensities for its sub-domains (as by Theorem 2) and thus we can usually adapt the intensities
and get a segmentation with even higher quality than the original one.

For analysis of optimal sub-domains, the concept of topological derivatives is useful. Basically, given
a segmentation s represented by {(Ωi, ci) | i = 1, . . . ,M}, two indices i, j = 1, . . . ,M and x ∈ Ωi, the
topological derivative Tij (x) of the segmentation is defined according to

Tij (x) = lim
ρ→0

1
|Bρ (x)|

(
‖u− sρ‖2L2 − ‖u− s‖2L2

)
with sρ being the segmentation represented by the changed segments

{(Ω1, c1), . . . , (Ωi \ Bρ (x) , ci), . . . , (Ωj ∪ Bρ (x) , cj), . . . , (ΩM , cM)} .

Bρ (x) stands for the ball around x with radius ρ. Thus, Tij (x) describes how the segmentation error
changes when transferring “the point x” from segment i to segment j. This is described in more detail
in [7, p. 6f]; there is also shown that

Tij (x) =
{

(u(x)− cj)2 − (u(x)− ci)2 |Ωj | > 0
−(u(x)− ci)2 |Ωj | = 0 , (3)

5

if the intensities of the segmentation satisfy Equation 2. So if for some i, j and ω ∈ Ωi we have Tij (x) < 0,
the choice of sub-domains Ωi and Ωj is sub-optimal. (Or put another way, for an optimal segmentation,
we can expect that Tij (x) ≥ 0 for all i, j and x ∈ Ωi.)

From a practical point of view, it makes sense that all segments in a segmentation have different
intensities. Otherwise, segments with the same intensity can be joined. Also — at least when only
considering the individual pixels and not their neighbourhoods, as I do — no two sub-domains should
contain pixels in which the original image assumes the same intensity. Otherwise, we can just put all of
them into one of those segments. Thus, the we want the following conditions to hold true:

∀i 6= j : ci 6= cj , (4)
u (Ωi) ∩ u (Ωj) = ∅ (5)

Lemma 4. If s represented by {(Ωi, ci) | i = 1, . . . ,M} is a segmentation of the image u, there exists
a segmentation s′ satisfying Equation 4 and Equation 5 while not having more segments and not less
quality than s.

Proof. Assume that Equation 4 is violated and let i, j = 1, . . . ,M be with ci = cj . Then clearly∫
Ωi

(u− ci)2 dµ +
∫

Ωj

(u− cj)2 dµ =
∫

Ωi∪Ωj

(u− ci)2 dµ

and thus ‖u− s‖L2 = ‖u− s′‖L2 with s′ represented by {(Ωk, ck) | k 6∈ {i, j}} ∪ {(Ωi ∪ Ωj , ci)}. So we
can ensure Equation 4, whether Equation 5 holds or not. Assume from now on that Equation 4 holds,
i.e., that ci 6= cj for all i, j.

If Equation 5 is violated, define for i = 1, . . . ,M the sets

Bi = {x ∈ Ω | ∀j < i : |u(x)− ci| < |u(x)− cj | and ∀j > i : |u(x)− ci| ≤ |u(x)− cj |} . (6)

It is clear that |u(x)− ci| ≤ |u(x)− cj | for all x ∈ Bi and i, j = 1, . . . ,M . Suppose that x ∈ Bi∩Bj with
i < j. Then |u(x)− ci| = |u(x)− cj | but this is a contradiction to x ∈ Bj . Thus all Bi, i = 1, . . . ,M ,
are disjoint. For x ∈ Ω arbitrary, the finite set {|u(x)− ci| | i = 1, . . . ,M} has a minimum; if we choose
k ∈ {1, . . . ,M} minimal such that |u(x)− ci| = |u(x)− ck|, then x ∈ Bk. Thus we get

Ω = B1∪̇. . .∪̇BM .

Because the condition on x in Equation 6 does only depend on u(x), it can be shown similarly to the
argument above that Equation 5 holds for the sets B1, . . . , BM . We can now define a new segmentation
s′ = {(Bi, ci) | i = 1, . . . ,M}. This satisfies Equation 5 and has as many segments as s. It is also not
worse because of:

‖u− s‖2L2 =
M∑

i,j=1

∫
Ωi∩Bj

(u− ci)2 dµ ≥
M∑

i,j=1

∫
Ωi∩Bj

(u− cj)2 dµ = ‖u− s′‖2L2

Note that the intensities c′i of the new segmentation s′ from Lemma 4 need not necessarily satisfy
Equation 2. However, once a segmentation s′ is obtained satisfying Equation 4 and Equation 5, then
according to Theorem 2 the intensities of s′ can be adjusted by Equation 2 to obtain the best quality.
So from now on, when looking for a good segmentation with few different intensities, we can concentrate
only on segmentations s′ that satisfy those conditions.

Theorem 5. Let s = {(Ωi, ci) | i = 1, . . . ,M} be a segmentation of the image u satisfying Equation 4
and Equation 5 such that ci satisfies Equation 2 for i = 1, . . . ,M . Also assume that s is not perfect, i.e.,
s 6= u. If all topological derivatives are non-negative, then there exists a partition of I into non-empty
disjoint intervals I1, . . . , IM such that Ωi = u−1 (Ii) for all i = 1, . . . ,M .

Proof. It will first be shown that Ωi 6= ∅ for all i = 1, . . . ,M : Assume that Ωi = ∅. Because s 6= u,
there exists j and x ∈ Ωj such that u(x) 6= cj . But then according to Equation 3, Tji (x) < 0 which
contradicts the assumption on the topological derivatives. For all k = 1, . . . ,M , Ωk 6= ∅ also means that
u (Ωk) = Ik 6= ∅.

Next, define Jk = u (Ωk) for k = 1, . . . ,M . Then according to Equation 5 all Jk are disjoint and
obviously Jk ⊂ I. I’ll show that for all i, j = 1, . . . ,M , either supJi ≤ inf Jj or the other way round

6

(i.e., these sets are not interlaced). Assume this claim holds. Define a0 = inf J1 and ai = supJi for
i = 1, . . . ,M , so that a0 ≤ . . . ≤ aM . Then define

Ii =


(ai−1, ai) ai−1 ∈ Ji−1, ai 6∈ Ji

[ai−1, ai) ai−1 6∈ Ji−1, ai 6∈ Ji

(ai−1, ai] ai−1 ∈ Ji−1, ai ∈ Ji

[ai−1, ai] ai−1 6∈ Ji−1, ai ∈ Ji

.

Then Ji ⊂ Ii for i = 1, . . . ,M and for all i, j, the intervals Ii and Ij are disjoint. Because ∪M
i=1Ii = [a0, aM]

and since I− = inf u (Ω) = mink inf Jk = a0 and I+ = aM , it follows that ∪M
i=1Ii = I. Since Jk ⊂ Ik,

it follows that Ωk = u−1 (Jk) ⊂ u−1 (Ik) for k = 1, . . . ,M . Suppose there is an x ∈ Ω \ Ωk where
x ∈ u−1 (Ik). Then x ∈ Ωl for some l 6= k and Ωl∩u−1 (Ik) 6= ∅. This means that Il∩Ik = u (Ωl)∩Ik 6= ∅
which is a contradiction. Thus Ωk = u−1 (Ik) for k = 1, . . . ,M and the assertion is shown.

Assuming that the assertion about the sets Ji does not hold, there exist i, j ∈ {1, . . . ,M}, a, c ∈ Ji,
b ∈ Jj and x, z ∈ Ωi, y ∈ Ωj such that a = u(x), b = u(y), c = u(z) with a < b < c. Note that according
to Equation 2, without loss of generality we can assume that a ≤ ci ≤ c because a and c can be chosen
arbitrarily close to inf Ji and supJi and clearly inf Ji ≤ ci ≤ supJi holds; even strict inequalities if the
infimum or supremum are not actually taken on.

There are two possible cases, firstly a < b ≤ ci and secondly ci ≤ b < c. I’ll only consider the
first one, the second is similar. Because of the assumption on the topological derivatives, we know that
Tji (y) ≥ 0, which by Equation 3 and for non-empty Ωi means that (b− ci)2 ≥ (b− cj)2 or equivalently
|b− ci| = ci − b ≥ |b− cj |.

If cj ≤ b, then cj ≤ b ≤ ci. If b < cj , then ci − b ≥ cj − b again implies cj ≤ ci. Because ci 6= cj ,
we get even cj < ci. Now if a ≤ cj , it follows that |a− cj | = cj − a < ci − a = |ci − a| and thus also
Tij (x) < 0 which is not possible. So let cj < a. But then

|a− cj | = a− cj < b− cj = |b− cj | ≤ |b− ci| = ci − b < ci − a = |a− ci| ,

which is a contradiction because it again means Tij (x) < 0. Thus, a < b ≤ ci can not hold.

Taking Theorem 2 and Theorem 5 together, we can represent “good” segmentations (in the sense of
Equation 2, Equation 4 and Equation 5) by specifying only a partition of I into intervals Ik, k = 1, . . . ,M .
Even more, we will see that under some additional assumptions on the image u (see Definition 4 and
Equation 9 below) it does not matter for the segmentation’s quality whether Ik contains its boundary
points or not. Then, all information can be characterized by only giving the boundary points between
those intervals. This amounts to a finite-dimensional vector (of M − 1 boundary points) and will lead
to a finite-dimensional optimization problem, given in Equation 11 and analyzed in Section 4.

7

3 The Distribution and Cost Functions

3.1 Distribution

Definition 3. Let u : Ω → I be an image and (Ω,F , µ) the underlying measurable space. Then define
for A ∈ F

π(A) =
µ(A)
|Ω|

.

This clearly makes (Ω,F , π) a probability space, because π is a measure and additionally π(Ω) = 1.
On this probability space, u is also measurable and thus is a random variable. Let p : R → R be its
cumulative distribution function.

By this definition, we get

p(t) = π(u−1 ((−∞, t])) =

∣∣u−1 ((−∞, t])
∣∣

|Ω|
.

Informally, the “random variable” in Definition 3 means “intensity of a randomly picked point in the
image”. Thus p represents a cumulative histogram of the image’s intensities.

Lemma 6. p (R) ⊂ [0, 1]. p is monotonic increasing and continuous from the right. p is continuous
from the left (thus continuous) in t ∈ R iff

∣∣u−1 ({t})
∣∣ = 0.

The function p has “compact support” in the sense that p(t) = 0 for all t < I− and p(t) = 1 for all
t ≥ I+. On the other hand, p(t) > 0 for all t > I− and p(t) < 1 if t < I+.

Proof. Most of this is well-known for distribution functions in general, see for instance [3, p. 209, 5.6.2].
Let t < I−. Then u−1 ((−∞, t]) = ∅ and thus p(t) = 0. Similarly, for t ≥ I+, u−1 ((−∞, t]) = Ω and

thus p(t) = 1. As a consequence of Definition 1 (in particular Equation 1), for every t > I− we have∣∣u−1 ((−∞, t])
∣∣ > 0 and thus p(t) > 0. For t < I+, it follows similarly that p(t) < 1.

Note that by Lemma 6, p is continuous if the image contains no positive measure regions of constant
intensity; this means, it is more “photo-like” than ”cartoon-like” and only has more or less steep gradients
instead of constant intensity. On the other hand, p is constant in some interval J ⊂ I if

∣∣u−1 (J)
∣∣ = 0,

since then for all s, t ∈ J we have p(t)− p(s) = π(u−1 ((s, t]) = 0.

Definition 4. p is said to be natural, if it is continuously differentiable and if p′(t) > 0 for all t ∈ (I−, I+).
Note that we actually need p′(t) > 0, requiring that p is strictly increasing is not enough.

In the following, I will often require that p is natural. This is certainly not true for all images, but
we’ll see in Section 5 that it is a reasonable assumption when the image u has some noise added to it
(either directly because of its nature or even artificially to evade exactly this problem).

As per [3, p. 24, 1.4.4], p also gives rise to a Lebesgue-Stieltjes measure p on R, with p(A) = π(u−1 (A))
for A ∈ F . Integration over some interval with this measure can be interpreted as integration over its
preimage under u in the original image domain:

Theorem 7. Let J ⊂ R be an interval and f : J → R be p-measurable. Then∫
J

f dp =
1
|Ω|

∫
u−1(J)

f ◦ u dµ. (7)

Proof. Assume that f(t) ≥ 0 for all t ∈ J . Otherwise this can be achieved by splitting f into positive
and negative parts.

Now, per definition (see [3, p. 37]) of the Lebesgue-Stieltjes integral, we know that∫
J

f dp = sup
{∫

J

s dp | 0 ≤ s ≤ f, s simple
}

. (8)

Let s =
∑n

i=1 siχAi be a simple function satisfying 0 ≤ s ≤ f where Ai, i = 1, . . . , n, is any partition of
J . Then if we define s′ : u−1 (J) → R via s′(x) = s(u(x)), s′ is also simple and s′ =

∑n
i=1 siχu−1(Ai).

Clearly, for all x ∈ u−1 (J) we have s′(x) = s(u(x)) ≤ f(u(x)) and thus 0 ≤ s′ ≤ f ◦ u. Then∫
J

s dp =
n∑

i=1

sip(Ai) =
1
|Ω|

n∑
i=1

si

∣∣u−1 (Ai)
∣∣

=
1
|Ω|

∫
u−1(J)

s′ dµ ≤ 1
|Ω|

∫
u−1(J)

f ◦ u dµ.

8

Because s was arbitrary, we get Equation 7 with “≤”. For the other way round, consider the analogue
of Equation 8 for f ◦ u and let s′ =

∑n
i=1 siχBi be a simple function with 0 ≤ s′ ≤ f ◦ u for a partition

Bi, i = 1, . . . , n, of u−1 (J). Define s : J → R by s(t) = maxx∈u−1({t}) s′(x). Then for all t ∈ J

s(t) = max
x∈u−1({t})

s′(x) ≤ sup
x∈u−1({t})

f(u(x)) = f(t).

The sets u (Bi) are a partition of J and for t ∈ u (Bi), say t = u(x) with x ∈ Bi, we have s(t) ≥ s′(x) = si

because x ∈ u−1 ({t}). The general relation u−1 (u (Bi)) ⊃ Bi implies that p(u (Bi)) ≥ |Bi|
|Ω| and

1
|Ω|

∫
u−1(J)

s′ dµ =
n∑

i=1

si
|Bi|
|Ω|
≤

n∑
i=1

sip(u (Bi)) ≤
∫

J

s dp ≤
∫

J

f dp,

which gives Equation 7 with “≥”.

Note that if u is sufficiently smooth, Theorem 7 can be understood in terms of the coarea formula [6,
p. 118, Proposition 3]. Specifically, if H1 denotes the one-dimensional Hausdorff measure, then∫ t

−∞
p′(s) ds = p(t) =

1
|Ω|

∫
u−1((−∞,t])

dµ =
1
|Ω|

∫ t

−∞

(∫
u−1({s})

dH1

|∇u|

)
ds.

This implies that p′(s) = 1
|Ω|
∫

u−1({s})
dH1

|∇u| and thus for J = (σ, τ] we get

1
|Ω|

∫
u−1(J)

f ◦ u dµ =
1
|Ω|

∫ τ

σ

(∫
u−1({s})

f ◦ u

|∇u|
dH1

)
ds

=
∫ τ

σ

f(s)

(
1
|Ω|

∫
u−1({s})

dH1

|∇u|

)
ds =

∫
J

f dp.

3.2 Cost Function

Definition 5. Let J ⊂ R be an interval with p(J) > 0. Then we define:

cp(J) =

∫
J

t dp(t)
p(J)

,

Fp(J) =
∫

J

(t− cp(J))2 dp(t).

Note that both cp(J) and Fp(J) are by now undefined if p(J) = 0! With Theorem 7, it is easy to see
that

cp(J) =

∫
u−1(J)

u dµ

|u−1 (J)|

if
∣∣u−1 (J)

∣∣ > 0 and thus just corresponds to Equation 2 for the segment chosen as u−1 (J). So if we
define a segment as preimage of the interval J in intensity-space (as motivated in Section 2), its optimal
intensity is given by cp(J). Similarly, rewritten as integration over the image domain we get

Fp(J) =
1
|Ω|

∫
u−1(J)

(u− cp(J))2 dµ.

This is just the segmentation error for that segment. Thus Fp(J) (but summarized over all segments
together of course, i.e., over Ji with ∪n

i=1Ji = I) is to be minimized as our cost function later on; see
Definition 6 below.

If p is natural, for any suitably measurable function f and interval J ⊂ R with boundary points σ < τ
the relation ∫

J

f dp =
∫ τ

σ

f(t)p′(t) dt (9)

holds. Especially, it does not matter whether the boundary points are part of the interval or not, because
{σ, τ} has measure 0 with respect to the Lebesgue measure applied on the right-hand side in Equation 9.
So in this case, we can without loss of generality assume that J = (σ, τ]; this will be the standard form

9

for intervals defining segments via their preimages later on. Additionally, we can apply Equation 9 to
reformulate Definition 5 based on p′ and the ordinary Lebesgue measure. Because p is then also strictly
increasing, all non-empty intervals have a positive p measure and the measure of an interval J as defined
above is always p(J) = p(σ) − p(τ). We’re finally able to define the set of possible segmentations that
will be considered and then our cost function.

Definition 6. Let u : I → R be an image and p the corresponding distribution function. Let p be
natural. Then the simplex

B =
{
b ∈ RM−1 | I− = b0 ≤ b1 ≤ · · · ≤ bM−1 ≤ bM = I+

}
is the set of possible boundaries in intensity-space giving a segmentation of M segments by Ωi = u−1 (Ji)
with Ji = (bi−1, bi].

Because p is increasing, 0 = p(Ji) = p(bi) − p(bi−1) is equivalent to bi = bi−1. In this case, define
now cp(Ji) = bi and Fp(Ji) in the usual way. For b ∈ B, our cost function is

Kp(b) =
M∑
i=1

Fp(Ji) =
M∑
i=1

∫ bi

bi−1

(t− cp(Ji))2p′(t) dt.

Lemma 8. B is compact in RM−1 and the interior of B is the set

B◦ =
{
b ∈ RM−1 | I− = b0 < b1 < . . . < bM = I+

}
. (10)

Proof. B is clearly bounded. For compactness, I’ll show that it is also closed. Let
(
b(k)
)
⊂ B be a

convergent sequence with limit b ∈ RM−1. Then for all i = 1, . . . ,M − 1, limk→∞ b
(k)
i = bi. Because for

all k ∈ N per definition b
(k)
i−1 ≤ b

(k)
i holds for i = 1, . . . ,M , this inequality is preserved by the limit and

also bi−1 ≤ bi holds, thus b ∈ B.
Now, define B′ to be the set in Equation 10. Let b ∈ B′ be given and choose 0 < ε < 1

2 mini(bi−bi−1).
Then it is easy to see that with respect to the ‖·‖∞ norm Bε (b) ⊂ B′ holds, thus B′ ⊂ B◦. On the other
hand, assume b ∈ B \ B′. Then there exists i such that bi = bi+1; as a consequence, for any ε > 0 the
point d = b + εei is in Bε (b) but d 6∈ B as di = bi + ε > bi+1 = di+1. Thus, b 6∈ B◦ which finally implies
B′ = B◦.

So in order to segment an image, we are solving the optimality problem:

Kp(b∗) = min
b∈B

Kp(b) (11)

We’ll see in Section 4 that Kp is continuous on B and continuously differentiable on its interior under
the assumptions of Definition 6. Thus there is actually a solution to Equation 11. And because of the
differentiability, we can look for that minimum based on the first order necessary optimality condition,
which will result in Theorem 10.

3.3 Examples

In Figure 2 I’ve compiled three sample images together with their functions p and Kp(b) for two and
three intensities (which means that Kp is a function of one or two boundaries). It is clearly visible that
for Figure 2b where the image itself is already piecewise constant, both p and Kp are discontinuous,
while for the image Figure 2a and also the real image in Figure 2c the distribution and costs are smooth
(except the discontinuity in Figure 2f at t = 0 because the image is placed on a black background).

The phantom image Figure 2b will be taken up again in Section 5 and Figure 4. There we will see
that adding random noise to the image smoothes its corresponding functions, so that all theory done
for continuously differentiable and strictly increasing p can be applied. But for now it suffices to notice
that in the smooth case (and especially for real images like Figure 2c) the cost function is rather regular
(although not necessarily convex as can be seen in Figure 2l) and thus easy to minimize — in the following
(Section 4) I’ll analyze this in theory and derive a suitable method for the optimization.

10

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(a) 1D “image”. (b) Phantom image. (c) Real image.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(d) Distribution p.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(e) Distribution p.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(f) Distribution p.

0

1000

2000

3000

4000

5000

0 0.2 0.4 0.6 0.8 1

(g) Cost Kp for M = 2.

0

200

400

600

800

1000

1200

1400

1600

0 0.2 0.4 0.6 0.8 1

(h) Cost Kp for M = 2.

0

500

1000

1500

2000

2500

3000

0 0.2 0.4 0.6 0.8 1

(i) Cost Kp for M = 2.

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
10

1000

2000

3000

4000

5000

(j) Cost Kp for M = 3.

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
10

200

400

600

800

1000

1200

1400

1600

(k) Cost Kp for M = 3.

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
10

500

1000

1500

2000

2500

3000

(l) Cost Kp for M = 3.

Figure 2: Distribution and cost functions for some sample images.

11

4 Solving the Optimality System

4.1 Continuity and Differentiability

Let u : I → R be an image as usual, p be its distribution function as in Definition 3 and let p be natural.
By Equation 9, we already saw that for all intervals J with boundary points σ < τ under the above
assumptions we get

cp(J) = cp ((σ, τ]) = cp([σ, τ)) =

∫ τ

σ
tp′(t) dt

p(τ)− p(σ)
.

Let us define f(σ, τ) = cp(J). Then it is easy to see that f is well-defined for I− ≤ σ < τ ≤ I+ because
p is strictly monotonic and f is continuously differentiable because p is. The derivatives are given as

∂f(σ, τ)
∂τ

=
(p(τ)− p(σ))τp′(τ)− p′(τ)

∫ τ

σ
tp′(t) dt

(p(τ)− p(σ))2
=

p′(τ)
p(τ)− p(σ)

(τ − f(σ, τ))

and in analogy (numerator and denominator both produce a negative sign)

∂f(σ, τ)
∂σ

=
p′(σ)

p(τ)− p(σ)
(σ − f(σ, τ)).

Lemma 9. Let p be natural. For I− ≤ σ < τ ≤ I+, f(σ, τ) ∈ (σ, τ). As a consequence, f is continuous
at the point (σ, σ).

Proof. Let P (t) be an anti-derivative of p(t). We use integration by parts and Cauchy’s mean value
theorem, see [5, p. 273]. By it, there exists θ ∈ (σ, τ) such that

f(σ, τ) =

∫ τ

σ
tp′(t) dt

p(τ)− p(σ)
=

(tp(t)− P (t))|τσ
p(τ)− p(σ)

=
p(θ) + θp′(θ)− p(θ)

p′(θ)
= θ,

which implies the assertion. Note that all fractions are well-defined because p′(t) > 0 is required.
The continuity of f(σ, σ) follows immediately when remembering that by Definition 6, f(σ, σ) =

cp ((σ, σ]) = σ.

For the cost function, we get

Fp(J) = Fp((σ, τ]) = Fp([σ, τ)) =
∫ τ

σ

(t− f(σ, τ))2p′(t) dt;

defining g(σ, τ) = Fp(J), g is continuous for all I− ≤ σ ≤ τ ≤ I+ (taking into account Lemma 9) and
also continuously differentiable with respect to σ and τ for σ < τ . The derivatives are in this case

∂g(σ, τ)
∂τ

= (τ − f(σ, τ))2p′(τ)− 2
∂f(σ, τ)

∂τ

∫ τ

σ

(t− f(σ, τ))p′(t) dt.

Per Definition 5, the remaining integral vanishes and thus

∂g(σ, τ)
∂τ

= p′(τ)(τ − cp(J))2,
∂g(σ, τ)

∂σ
= −p′(σ)(σ − cp(J))2. (12)

In order to calculate ∇Kp(b), we have to consider the derivatives ∂Kp(b)
bi

for i = 1, . . . ,M − 1. For
each of those i, the corresponding variable bi shows up in Kp(b) exactly once as lower and once as upper
bound of a Fp(J) summand. For a fixed i, I’ll introduce

c
i+ 1

2
p = f(bi, bi+1) = cp ((bi, bi+1])

c
i− 1

2
p = f(bi−1, bi) = cp ((bi−1, bi])

for easy notation. (Then c
i− 1

2
p and c

i+ 1
2

p are the optimal intensities for the segments separated by the
boundary bi in intensity-space.)

12

Of course, we can use any common technique for finite-dimensional optimization to solve Equation 11,
like gradient descent methods. It is also clear from the above analysis that if p is smooth enough, then
Kp(b) is even twice continuously differentiable and we can build its Hessian (which will be tridiagonal).
Thus, Newton’s method can also be applied to find a minimum. However, my calculational results show
that Newton’s method is very instable numerically in this case because the Hessian can only be found
very inexactly via finite differences (numerically, as will be discussed in Section 6, the image u can be
processed to give an approximation to p′ — but the second derivative is not directly accessible and has
to be found from p′ via differences which may not give very good results). Other methods also worked
for certain cases, although the most efficient are the ones discussed below and summarized in Section 6.

4.2 Optimality Condition

Theorem 10. If p is natural, there exists a solution b∗ in the interior of B satisfying Equation 11. With
the notation from above, such a minimizer satisfies

b∗i =
c
i+ 1

2
p + c

i− 1
2

p

2
(13)

for all i = 1, . . . ,M − 1.

Proof. We’ve already seen that Kp(b) is continuous on the whole of B, and because B is compact by
Lemma 8, there exists a solution. If b is a solution on the boundary of B, then by Lemma 8 an equality
bi = bi+1 holds and the corresponding segmentation has fewer than M segments; by Lemma 3, we can
find another segmentation with M segments instead which corresponds to boundaries b∗ in the interior
of B that is at least as good (and because the original segmentation is a minimizer, is one, too). Thus
we can assume that we’ve got a solution b∗ in the interior.

Because Kp(b) is continuously differentiable there, the first order necessary optimality condition for
Equation 11 has to be satisfied; with Equation 12 and easy calculation, this implies

∂Kp(b∗)
∂b∗i

= p′(b∗i)((b
∗
i − c

i− 1
2

p)2 − (b∗i − c
i+ 1

2
p)2) = p′(b∗i)(c

i+ 1
2

p − c
i− 1

2
p)(2b∗i − c

i+ 1
2

p − c
i− 1

2
p) (14)

and additionally ∂Kp(b∗)
∂b∗i

= 0.
Because b∗ ∈ B◦, I− = b0 < b∗i < bM = I+ and thus p′(b∗i) > 0. By Lemma 9, we also get that

c
i+ 1

2
p > c

i− 1
2

p and thus this condition is equivalent to 2b∗i −c
i+ 1

2
p −c

i− 1
2

p = 0 which implies the assertion.

Note the similarity between ∂Kp(b)
∂bi

(in the first equality of Equation 14) and the topological derivative
in Equation 3. But because a change of bi does not hand over a small ball of the image domain between
segments but instead all points with the intensity bi, the additional weighting factor p′(bi) has to be
there.

In the rest of this subsection, I want to illustrate the optimality system Equation 13 and the minimiza-
tion in Equation 11 with a simple example. Consider the image of Figure 2a, which can be characterized
by its distribution function

p(x) =

 0 x ≤ 0
x 0 ≤ x ≤ 1
1 1 ≤ x

.

It is continuously differentiable and p′(x) = 1 > 0 for I− = 0 < x < 1 = I+, thus natural. Let M > 1
be given, and we try to find the best segmentation of this image. Given two boundaries 0 < σ < τ < 1,
the corresponding segment’s intensity is

cp ((σ, τ]) =

∫ τ

σ
tp′(t) dt

p(τ)− p(σ)
=

∫ τ

σ
t dt

τ − σ
=

σ + τ

2
.

Then for i = 1, . . . ,M − 1, the boundaries bi must satisfy the optimality condition of Theorem 10:

2bi = c
i+ 1

2
p + c

i− 1
2

p =
bi+1 + bi + bi + bi−1

2
⇔ bi =

bi+1 + bi−1

2

13

which is equivalent to the system of linear equations

b1 =
1
2
(b2 + b0) =

1
2
b2

b2 =
1
2
(b3 + b1)

...

bM−1 =
1
2
(bM + bM−2) =

1
2
(1 + bM−2).

The unique solution to this system is bi = i
M for i = 1, . . . ,M−1 and thus it also has to be the solution

guaranteed by Theorem 10. In fact, this is also quite reasonable, as it means that the intensity-space is
divided into equal segments which clearly is a good choice for the example image.

4.3 Fixed-Point Iteration

Definition 7. For p natural and with the notation of above, define a set of maps Ψi : B → RM−1 for
i = 1, . . . ,M − 1 such that

Ψi(b) =

(
b1, . . . , bi−1,

c
i+ 1

2
p + c

i− 1
2

p

2
, bi+1, . . . , bM−1

)
,

and also Φ : B → RM−1 by

Φ(b) =

(
c
i+ 1

2
p + c

i− 1
2

p

2

)M−1

i=1

.

Lemma 11. For b ∈ B and i = 1, . . . ,M − 1, it holds that Ψi(b),Φ(b) ∈ B; i.e., B is invariant under
those maps (and thus they are functions B → B). Similarly, for b ∈ B◦ and i = 1, . . . ,M − 1, we have
Ψi(b),Φ(b) ∈ B◦.

Proof. Let i = 1, . . . ,M − 1. Define bi = c
i+ 1

2
p +c

i− 1
2

p

2 (i.e., b = Φ(b)), c
i+ 3

2
p = cp ((bi+1, bi+2]) and

c
i− 3

2
p = cp ((bi−2, bi−1]). Then taking Lemma 9 into account:

bi =
c
i+ 1

2
p + c

i− 1
2

p

2
≥ bi + bi−1

2
≥ bi−1.

For b ∈ B◦, even strict inequality holds. Similarly one obtains bi ≤ bi+1 and strict inequality in the
interior of B. Also

bi ≥
bi + bi−1

2
≥ c

i− 1
2

p + c
i− 3

2
p

2
= bi−1

with strict inequality for b ∈ B◦. By analogues, bi ≤ bi+1. From this, the assertion easily follows.

Theorem 12. Let p be natural and define Φ : B → B, Ψi : B → B as in Definition 7. Then b ∈ B
is a fixed-point of Φ if and only if it is a common fixed-point of all Ψi. There exists b∗ ∈ B◦ satisfying
Equation 11, which is such a fixed-point.

Proof. The functions are well-defined because of Lemma 11 and the equivalence is clear per definition.
Existence follows from Theorem 10.

Thus we can attempt to find an optimal segmentation via Equation 11 by doing a fixed-point iteration
either with Φ directly or for instance with

Ψ = ΨM−1 ◦ · · · ◦Ψ1

in a “Gauß-Seidel” like manner.

Lemma 13. Let p be natural and consider Φ : B → B and Ψi : B → B as in Definition 7. Then for
every b ∈ B◦, both Φ(b)− b and Ψi(b)− b are descent directions for Kp(b) or zero.

14

Proof. Let i = 1, . . . ,M −1 and b ∈ B◦ be given, and set d = Ψi(b)− b; suppose d 6= 0. We have to show
d · ∇Kp(b) < 0 in order to prove that d is a descent direction. The proof for Φ(b)− b goes the same.

Clearly, di = c
i+ 1

2
p +c

i− 1
2

p

2 − bi and dj = 0 for j 6= i. Thus (using Equation 14)

d · ∇Kp(b) = di
∂Kp(b)

∂bi
=

(
c
i+ 1

2
p + c

i− 1
2

p

2
− bi

)
· p′(bi)(c

i+ 1
2

p − c
i− 1

2
p)(2bi − c

i+ 1
2

p − c
i− 1

2
p).

Because p is natural and b ∈ B◦, p′(bi)(c
i+ 1

2
p − c

i− 1
2

p) > 0. As d 6= 0, we know that bi 6= c
i+ 1

2
p +c

i− 1
2

p

2 must
hold. It remains to observe that

0 >

(
c
i+ 1

2
p + c

i− 1
2

p

2
− bi

)
· (2bi − c

i+ 1
2

p − c
i− 1

2
p) = −2

(
c
i+ 1

2
p + c

i− 1
2

p

2
− bi

)2

.

While I unfortunately can not present a full proof of convergence of the fixed-point iterations,
Lemma 13 at least gives some justification to them as optimization strategies. In principle, instead
of doing the full iteration, those descent directions could be used together with a suitable line-search
algorithm in order to improve convergence should this be necessary in practice. An additional result is
as follows:

Theorem 14. For fixed segment-intensities c1 < c2 < . . . < cM , the segmentation corresponding to the
boundaries given by b0 = I−, bM = I+ and bi = ci+ci+1

2 for i = 1, . . . ,M − 1 has minimal relative error.
As a consequence, Kp(Φ(b)) ≤ Kp(b) for all b ∈ B. Equality may only hold if Φ(b) is a fixed-point of Φ.

Proof. By the proof of Lemma 4, for fixed intensities the domains Bi per Equation 6 minimize the
relative error. To express Equation 6 in terms of the boundaries, I will show that B1 = u−1 ([I−, b1])
and Bi = u−1 ((bi−1, bi]) for i = 2, . . . ,M . Because the intensities are sorted, the condition

∀j < i : |u(x)− ci| < |u(x)− cj | and ∀j > i : |u(x)− ci| ≤ |u(x)− cj |

of Equation 6 is equivalent to

|u(x)− ci| < |u(x)− ci−1| and |u(x)− ci| ≤ |u(x)− ci+1| .

This, however, is fulfilled if and only if

bi−1 =
ci + ci−1

2
< u(x) ≤ ci + ci+1

2
= bi,

which is equivalent to x ∈ u−1 ((bi−1, bi]) as was to show.
If ci are the intensities given by Equation 2 for the segmentation corresponding to b ∈ B, then the

optimal boundaries as by the first part of this proof are Φ(b). Kp(Φ(b)) is by Theorem 2 smaller than the
cost of the segmentation with intensities ci and boundaries Φ(b), which in turn is not larger than Kp(b)
by the first part of this theorem. Thus Kp(Φ(b)) ≤ Kp(b). Because of the uniqueness in Theorem 2,
equality can only hold if all ci are already the optimal intensities for the boundaries Φ(b), but then
Φ(Φ(b)) = Φ(b) because Φ depends only on the optimal intensities of a segmentation and those are the
same for b and Φ(b).

The result of strict decrease if not already at a fixed-point excludes the possibility that a limit-cycle
(such that b = Φk(b) for some k > 2) exists for the fixed-point iteration with Φ. However, this not
necessarily implies convergence towards a fixed-point as the trajectory of some b ∈ B may have multiple
accumulation points with only asymptotic convergence towards them.

Note that Theorem 14 and its proof also makes clear that the fixed-point iteration with Φ is nothing
else than application of the well-known k-means clustering algorithm (see [9, p. 285f]) to the problem of
image segmentation: There, an iteration with alternating steps is performed. First, for given domains
the “optimal” mean values are calculated in the same way as motivated by Theorem 2 (which is already
implicitly included in my practice of describing segments by their boundaries). Second, for given mean
values, the items to be clustered are assigned to “optimal” domains by a Voronoi tessellation in the image
range space based on the current mean values; but in the case of image segmentation, this is nothing else
than transforming b into Φ(b) as we have just seen. This application of k-means to image segmentation
is an adaption to an infinite set of items, though, while the classical algorithm is usually formulated for a
finite set. So this work can be seen as a measure theoretic derivation of the k-means clustering algorithm
applied to image segmentation.

15

4.4 Sequential Construction of the Fixed-Point

When an intensity bound b1 ∈ I is given and Equation 13 should be satisfied, we can successively
calculate b2, . . . , bM−1 from this condition. Of course, bM = I+ does not in general also satisfy the
relevant equation (only if the b1 we started with actually belongs to a solution point). I’ll now formalize
this idea to give a construction of the solution boundaries b ∈ B.

Lemma 15. Let p be natural, D = {(σ, τ) | σ ∈ I, τ ∈ [σ, I+]} and define f : D → I by f(σ, τ) =
cp ((σ, τ]). Let us further for fixed σ, τ ∈ I define fσ : [σ, I+]→ I, τ 7→ f(σ, τ) and fτ : [I−, τ]→ I, σ 7→
f(σ, τ).

Then f , fσ and fτ are continuous, fσ and fτ are strictly increasing. Their images are compact
intervals and on these, fσ and fτ are continuously invertible. If β and g are continuous functions, the
solution t to

f(β(τ), t) = g(τ) (15)

depends continuously on τ .

Proof. Continuity of f follows from Lemma 9, as does the continuity of fσ and fτ . Again because of
Lemma 9, fσ(σ) < fσ(τ) for all τ ∈ (σ, I+]. Additionally we find

f ′σ(τ) =
∂f(σ, τ)

∂τ
=

p′(τ)
p(τ)− p(σ)

(τ − f(σ, τ))

which is strictly positive for τ > σ because of f(σ, τ) ∈ (σ, τ). Similarly it follows that also fτ is strictly
increasing.

Because fσ and fτ are continuous and defined on a compact interval, their images are also compact
intervals by [5, p. 235]. They are injective because they are strictly increasing, and thus on their image
continuously invertible ([5, p. 233]).

Now, let (τn) → τ be a convergent sequence and (tn) , t be given such that Equation 15 holds for
all pairs (τn, tn) and also for (τ, t). If (tn) converges to some s, then we can take the limit n → ∞ in
Equation 15 and get f(β(τ), s) = g(τ). As fβ(τ) is injective, t = s follows and thus (tn) → t. Because
(tn) ⊂ I, it is bounded; for each convergent sub-sequence, we get by the argument above that its limit
must be t. Thus (tn)→ t.

Lemma 16. Let p be natural and M ≥ 2. Then there exist θ̂ ∈ I and functions βi, i = 1, . . . ,M − 1,
such that:

(a) βi : [I−, θ̂]→ I for i = 0, . . . ,M − 1,

(b) all βi are continuous,

(c) β0(θ) = I−, β1(θ) = θ,

(d) ∀θ ∈ [I−, θ̂] : β0(θ) ≤ β1(θ) ≤ · · · ≤ βM−1(θ),

(e) βM−1(I−) = I− and βM−1(θ̂) = I+,

(f) for i = 1, . . . ,M − 2 and all θ ∈ [I−, θ̂]: 2βi(θ) = f(βi(θ) + βi+1(θ)) + f(βi−1(θ), βi(θ)).

(g) Let bi, i = 0, . . . ,M , be given with b0 = I− and bM = I+. Then bi = c
i+ 1

2
p +c

i− 1
2

p

2 holds for
i = 1, . . . ,M − 1 if and only if there exists a unique θ∗ ∈ [I−, θ̂] such that bi = βi(θ∗) for all i.

Proof. We’ll show this by induction with respect to M . In the case M = 2, we take θ̂ = I+ and β0, β1

according to (c). Then the conditions (a), (b), (d) and (e) hold trivially. Condition (f) does not apply
because the range of i is empty in this case. Finally, condition (g) is considered at the end of the proof
for a general M .

Now assume the assertions (a)–(f) hold for M ≥ 2. Let β0, . . . , βM−1 be the functions already
satisfying them for some θ′ in place of θ̂. We have to define βM and a new θ̂. Let f(σ, τ) = cp ((σ, τ]) be
as in Lemma 15 and define x(σ, τ) = τ + (τ − f(σ, τ)). Then clearly, both f and x are continuous and
f(σ, τ) ∈ [σ, τ] as well as x(σ, τ) ≥ τ holds.

Define functions g(θ) = x(βM−2(θ), βM−1(θ)) and m(θ) = f(βM−1(θ), I+). As compositions of con-
tinuous functions, again both g and m are continuous themselves. Set D = {θ ∈ [I−, θ′] | g(θ) ≤ m(θ)}.

16

Note that D 6= ∅, since g(I−) = I− and m(I−) = f(I−, I+) ∈ (I−, I+) implies I− ∈ D. Be-
cause of g(I−) < m(I−), it follows from the continuity of these functions that there is an ε > 0
such that g(θ) < m(θ) holds for all θ ∈ [I−, I− + ε]. Thus if we define θ̂ = supD, it follows that
I+ ≥ θ̂ ≥ I− + ε > I−. Also, since I+ ≥ f(βM−2(θ′), I+) implies

g(θ′) = 2I+ − f(βM−2(θ′), I+) ≥ I+ = f(I+, I+) = m(θ′),

it follows that θ̂ ≤ θ′. Finally note that a strict inequality g(θ̂) < m(θ̂) or g(θ̂) > m(θ̂) would be
preserved in a neighbourhood of θ̂ due to continuity of these functions. Since such a strict inequality
would violate the definition of θ̂, it follows that g(θ̂) = m(θ̂) holds.

By condition (a), βM−1(θ) ∈ I holds for all θ ∈ [I−, θ′], so since θ̂ ≤ θ′ it follows from Lemma 15 that
for each θ ∈ [I−, θ̂] the function fβM−1(θ) is defined on [βM−1(θ), I+] and it is invertible on its range.
Since fβM−1(θ) is increasing and fβM−1(θ)(βM−1(θ)) = βM−1(θ) and fβM−1(θ)(I+) = m(θ) holds, it follows
that the range of fβM−1(θ) is [βM−1(θ),m(θ)]. From condition (d) and f(βM−2(θ), βM−1(θ)) ≤ βM−1(θ)
it follows that

βM−1(θ) ≤ 2βM−1(θ)− f(βM−2(θ), βM−1(θ)) = g(θ)

for all θ ∈ [I−, θ′]. Also, g(θ) ≤ m(θ) holds for all θ ∈ [I−, θ̂] because of the definition of θ̂. Thus, g(θ)
is in the range of fβM−1(θ) for all θ ∈ [I−, θ̂]. Hence, the function βM (θ) may be defined according to
fβM−1(θ)(βM (θ)) = g(θ) or as the unique solution to

f(βM−1(θ), βM (θ)) = g(θ)

for each θ ∈ [I−, θ̂] (see Lemma 15 and Equation 15).
Since the solution τ = βM (θ) to f(βM−1(θ), τ) = g(θ) necessarily lies in the definition range of

fβM−1(θ), the inequality I− ≤ βM−1(θ) ≤ βM (θ) ≤ I+ holds for all θ ∈ [I−, θ̂]. Thus, (a) is established
for βM . The same inequality implies also condition (d). By Lemma 15, βM is continuous which gives
(b). Because βM−1(I−) = I− and thus

f(βM−1(I−), I−) = f(I−, I−) = I− = x(I−, I−) = g(I−),

it follows with Lemma 15 that βM (I−) = I−. Similarly, by f(βM−1(θ̂), I+) = m(θ̂) = g(θ̂) we get
βM (θ̂) = I+ and thus condition (e). Finally, condition (f) follows for βM from f(βM−1(θ), βM (θ)) = g(θ).

It remains now to prove the claim (g). First, suppose bi = c
i+ 1

2
p +c

i− 1
2

p

2 holds for i = 1, . . . ,M − 1.
Then choose θ∗ = b1 and note that β1(θ∗) = b1. Assume now inductively for i ≥ 1 that bj = βj(θ∗)
holds for j = 1, . . . , i. By condition (f),

f(bi, bi+1) = x(bi−1, bi) = x(βi−1(θ∗), βi(θ∗)) = f(βi(θ∗), βi+1(θ∗)) = f(bi, β
∗
i+1).

Thus by Lemma 15, bi+1 = βi+1(θ∗). If θ̃ were any other value satisfying bi = βi(θ) for i = 1, . . . ,M − 1,
then θ̃ = β1(θ̃) = b1 = θ∗. Thus, θ∗ is unique.

Now on the other hand, assume there is a unique θ∗ ∈ [I−, θ̂] such that bi = βi(θ∗) for i = 1, . . . ,M−1.
Then by condition (f),

bi = βi(θ∗) =
1
2

(f(βi(θ∗), βi+1(θ∗) + f(βi−1(θ∗), βi(θ∗))) =
1
2

(f(bi, bi+1) + f(bi−1, bi)) =
c
i+ 1

2
p + c

i− 1
2

p

2
.

Theorem 17. Let p be natural and the definitions from Lemma 16 apply. Let b = (b1, . . . , bM−1) ∈ B
be any solution to the problem in Equation 11, whose existence is guaranteed by Theorem 10. Then there
exists a unique θ∗ ∈ (I−, θ̂) such that bi = βi(θ∗) for i = 1, . . . ,M − 1.

Proof. According to Theorem 10, a solution b to the problem of Equation 11 is characterized by Equa-
tion 13, and thus b is a fixed-point for Φ. According to condition (g) in Lemma 16, there exists a unique
θ∗ ∈ [I−, θ̂] such that bi = βi(θ∗) for all i = 1, . . . ,M − 1. It remains to show that θ∗ ∈ (I−, θ̂).

For this, define the map δ : [I−, θ̂]→ R by

δ(θ) = βM−1(θ)−
f(βM−1(θ), I+) + f(βM−2(θ), βM−1(θ))

2
.

17

Then δ is clearly continuous and the point b = (b1, . . . , bM−1) = (β1(θ∗), . . . , βM−1(θ∗)) ∈ B is a fixed-
point of Φ if and only if δ(θ∗) = 0. It can not be that θ∗ = I− holds, since

δ(I−) = I− − f(I−, I+) + f(I−, I−)
2

=
I− − f(I−, I+)

2
< 0.

On the other hand,

δ(θ̂) = I+ − f(I+, I+) + f(βM−2(θ̂), I+)
2

=
I+ − f(βM−2(θ̂), I+)

2
≥ 0.

That θ∗ = θ̂ can not hold is established as follows: Assume that

0 = δ(θ̂) =
I+ − f(βM−2(θ̂), I+)

2
.

Then necessarily βM−2(θ̂) = βM−1(θ̂) = I+. Let k ≤M − 2 be such that βk−1(θ̂) < βk(θ̂) = I+; such a
k exists because β0(θ̂) = I− < I+. But then according to Lemma 16,

I+ = βk(θ̂) =
f(βk(θ̂), βk+1(θ̂)) + f(βk−1(θ̂), βk(θ̂))

2

=
I+ + f(βk−1(θ̂), I+)

2
< I+,

which is a contradiction. Thus δ(θ̂) > 0 and in particular δ(θ̂) 6= 0, which implies the claim.

Note that because δ(I−) < 0 and δ(θ̂) > 0 in the proof of Theorem 17, at least one θ∗ ∈ (I−, θ̂) with
δ(θ∗), thus corresponding to a fixed-point, can be constructed by the intermediate value theorem (see
[5, p. 234f]). Additionally, also the construction of the inverse function in Lemma 15 and the βi’s in
Lemma 16 are all nearly explicit. By methods like interval bisection, this sequential construction of a
fixed-point can be actually done in practice numerically and thus used as a way to find a possible best
segmentation. However, this is clearly “asymmetric” in nature (as we start at the lower boundaries and
successively construct the upper ones) and also susceptible to rounding errors and unprecise results due
to numerical integration in certain cases — but it may be used to generate some initial segmentation
which is used as starting-point for a fixed-point iteration as in Definition 7. This will be discussed in
more detail in Section 6.

4.5 Non-Unique Fixed-Points

Unfortunately, the fixed-point of Theorem 12 can not be guaranteed to be unique. In this final subsection,
I will give an example where this is illustrated.

Consider again the sequential construction done in the proof of Lemma 16: Given two boundaries
bi−2 and bi−1, we wanted to construct the next one bi such that Equation 13 holds. For this, we defined
a function x(σ, τ) = τ + (τ − cp ((σ, τ])) which determines, according to the optimality system, the
required segment-intensity of bi−1 and bi. This value must match the actual segment-intensity according
to cp ((σ, τ]) = x(σ, τ). The construction is unique if x is strictly increasing (i.e., injective). However,
this needs not be the case, because

∂x(σ, τ)
∂τ

= 2− ∂cp ((σ, τ])
∂τ

= 2− p′(τ)
p(τ)− p(σ)

(τ − cp ((σ, τ]))

may be positive or negative. It may well be negative especially if p′(τ) is large, i.e., p steep around τ .
It is possibly surprising that x(σ, τ) may actually decrease when increasing τ . But one may consider

that, as a function of τ , x(σ, τ) is the “mirror image” of cp ((σ, τ]) in the following sense: If p is very
steep around τ , then increasing τ can increase cp ((σ, τ]) strongly, because a large area of intensity near
τ is included in the average-value calculation and thus the result is shifted towards τ . This increase in
cp ((σ, τ]) may be much more rapid than the increase in τ , and because of the term (τ−cp ((σ, τ])) above,
x(σ, τ) may actually decrease.

For the promised example where this actually happens, consider intensities in I = [0, 1]. Define for
parameters µ = 1

2 and δ = 1000 the functions

f(t) =
t√

t2 + 1
g(t) = f(δt) + t

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(a) Distribution p.

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) Cost Kp.

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

(c) Φ(b)− b for fixed-points.

Figure 3: Example for non-unique fixed-point.

and with those the distribution function

p(t) =
g(µ)− g(µ− t)
g(µ)− g(µ− 1)

. (16)

Then it is easy to see that p as defined in Equation 16 satisfies p(0) = 0, p(1) = 1, is strictly increasing
because f is strictly increasing, and p is continuously differentiable on I. Thus it actually is a natural
distribution function.

I will not give detailed calculations for the following results, but it is possible to symbolically calculate
cp ((σ, τ]) as well as Φ(b) for M = 2 and p as in Equation 16. The calculations were performed using
the Computer Algebra System Maxima 5.17.1, see [2]. This p is shown in Figure 3a. Figure 3b shows
the corresponding cost Kp(b), and in Figure 3c the function Φ(b)− b is plotted. It has three zeros, all of
which are fixed-points. Those fixed-points correspond to the local optima of the cost, which include two
minima and one maximum. So in this case, there is no unique fixed-point, and one of the fixed-points
even corresponds to a local maximum rather than minimum.

19

5 Adding Noise to the Image

Images that are measured — for instance, ordinary photographs or magnetic resonance images — can
never really exactly represent the original object, but because of inexactness and disturbance in the
measurement process have noise added to them. In this section, I will consider the effect this has on the
segmentation method and analysis done above, most prominently in Section 4.

While noise is usually regarded as a problem or at least nuisance, we’ll see that in this context it can
have a rather positive impact as it ensures under certain reasonable conditions that p (as per Definition 3)
of the noisy image is natural, even if it would not be so for the original image.

Definition 8. Let u : Ω→ I be an image, let p0 be the distribution function defined in Definition 3 for
u and let (Ω,F , π) be the probability space introduced there. Further, assume that n is a real random
variable such that u and n are independent and fn : R→ R is the probability density function of n. fn

shall be continuously differentiable and fn
−1 ((0,∞)) = (I−n , I+

n). That is, the support of n shall be the
compact interval [I−n , I+

n].
Then for some noise-level ν > 0, ũ = u + νn is another real random variable; it is the image u with

noise added. Let pν be the corresponding distribution function.

Lemma 18. pν has “compact support”, meaning that pν(x) = 0 for all x ≤ I− + νI−n and pν(x) = 1 for
all x ≥ I+ + νI+

n . pν is given by

pν(x) =
1
ν

∫ ∞

−∞
p0(u)fn

(
x− u

ν

)
du. (17)

Proof. I’ll first show that Equation 17 holds:

pν(x) = P (u + νn ≤ x) =
∫ ∞

−∞
P (u ≤ x− νξ) fn(ξ) dξ

=
∫ ∞

−∞
p0(x− νξ)fn(ξ) dξ =

1
ν

∫ ∞

−∞
p0(u)fn

(
x− u

ν

)
du

Now, let x ≤ I−+ νI−n . Then clearly x−u
ν ≤ I−−u

ν + I−n . For u < I−, we have that p0(u) = 0; but for
u ≥ I−, it follows that x−u

ν ≤ I−n and thus fn

(
x−u

ν

)
= 0, so that by the formula above pν(x) = 0. Let

x ≥ I+ + νI+
n . Then as before x−u

ν ≥ I+−u
ν + I+

n . If u ≤ I+, then x−u
ν ≥ I+

n and thus fn

(
x−u

ν

)
= 0. So

pν(x) =
1
ν

∫ ∞

I+
p0(u)fn

(
x− u

ν

)
du =

1
ν

∫ ∞

I+
fn

(
x− u

ν

)
du

= −
∫ −∞

x−I+
ν

fn(ξ) dξ ≥
∫ I+

n

−∞
fn(ξ) dξ = 1,

because x−I+

ν ≥ I+
n and fn is a density function. pν(x) ≤ 1 because it is a cumulative distribution

function, thus pν(x) = 1 as was to show.

Theorem 19. pν is continuously differentiable. Let d = ν(I+
n − I−n). If for all x ∈ (I−, I+) we have

p0(x) > p0(x− d
2) (which means that the “gaps” in intensity-space where p0 is constant are smaller than

the noise’s bandwidth), then p′ν(x) > 0 for all x such that 0 < pν(x) < 1. This essentially means that pν

is natural in this case.

Proof. Because fn is continuously differentiable, it is evident by Lemma 18 and Equation 17 that pν is
continuously differentiable.

So assume that the gap inequality holds for p0 and let x be given such that 0 < pν(x) < 1. Assume for
now that we have σ < τ such that p0(τ) > p0(σ) and fn

(
x−u

ν

)
> 0 for all u ∈ [σ, τ]. As fn is continuous

and [σ, τ] compact, this actually means that fn is bounded away from zero, thus infu∈[σ,τ] fn

(
x−u

ν

)
> 0.

Then:

p′ν(x) =
1
ν2

∫ ∞

−∞
p0(u)f ′n

(
x− u

ν

)
du =

1
ν

∫ ∞

−∞
fn

(
x− u

ν

)
dp0(u)

≥ 1
ν

(
inf

u∈[σ,τ]
fn

(
x− u

ν

))∫
(σ,τ]

dp0(u)

=
1
ν

(
inf

u∈[σ,τ]
fn

(
x− u

ν

))
(p0(τ)− p0(σ)) > 0

20

So in order to complete the proof, we have to find σ and τ satisfying the assumptions made above.
If for all u with fn

(
x−u

ν

)
> 0 we have p0(u) = 0, then clearly pν(x) = 0. On the other hand, if for all

of them p0(u) = 1, then as in the proof of Lemma 18 we get pν(x) = 1. Recall that x was chosen such
that 0 < pν(x) < 1, thus by the argument above, on the set of u’s with f

(
x−u

ν

)
> 0, there exist u’s with

p0(u) > 0 and there exist u’s with p0(u) < 1. But suppose that there is no such u with 0 < p0(u) < 1,
then for all of them p0(u) ∈ {0, 1}. This however is a contradiction to Definition 1 and thus there exists
a u such that fn

(
x−u

ν

)
> 0 and also 0 < p0(u) < 1. Let s = x− u− νI−n , then s > 0 because x−u

ν > I−n .
If p0(u) < p0

(
u + s

2

)
, then σ = u and τ = u + s

2 satisfy the requirements: fn

(
x−u

ν

)
> 0 holds per

construction, and

fn

(
x− τ

ν

)
= fn

(
x− u− s

2

ν

)
= fn

(
1
2

x− u

ν
+

I−n
2

)
.

Because x−u
ν > I−n , the argument is surely greater than I−n . On the other hand, x−u

ν < I+
n and thus the

argument is also less than I−n +I+
n

2 < I+
n , so that fn

(
x−b

ν

)
> 0. Because the support of fn is connected,

we get that fn

(
x−u

ν

)
> 0 for all u ∈ [σ, τ].

So finally assume that 0 < p0(u) = p0

(
u + s

2

)
< 1 and define τ = u+ s

2 as well as σ = τ − d
2 . Because

of our gap inequality, assumed to hold for p0, it is clear that p0(σ) < p0(τ) must hold. fn

(
x−τ

ν

)
> 0 as

before. Note that I−n +I+
n

2 = I−n + d
2ν and that I−n + d

ν = I+
n . Above we already saw that I−n < x−τ

ν <

I−n + d
2ν . Thus I−n + d

2ν < x−σ
ν < I+

n , and because fn is positive on (I−n , I+
n), we get that fn

(
x−σ

ν

)
> 0.

Thus in this case, the σ and τ as chosen also satisfy the requirements.

Let’s consider the effect of noise by example. Figure 4 is the analogue of Figure 2 with Figure 2b
as original and increasing amount of noise (with a Gaussian distribution) added to it. In the sequence
Figure 4d, Figure 4e and Figure 4f, it is clearly visible that the noise removes the discontinuities present
in Figure 2e, makes pν ever smoother and also washes out the constant regions, thus demonstrating
Theorem 19 in practice. Note that the minima of the cost functions are kept in place, and so a segmen-
tation found on the noisy, smooth functions is also applicable to the original image in this case; see also
Figure 8 later.

21

(a) 2% noise. (b) 5% noise. (c) 20% noise.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(d) Distribution pν .

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(e) Distribution pν .

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(f) Distribution pν .

0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1

(g) Cost Kpν for M = 2.

0

200

400

600

800

1000

1200

1400

1600

0 0.2 0.4 0.6 0.8 1

(h) Cost Kpν for M = 2.

0

100

200

300

400

500

600

700

800

0 0.2 0.4 0.6 0.8 1

(i) Cost Kpν for M = 2.

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
10

500

1000

1500

2000

(j) Cost Kpν for M = 3.

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
10

200

400

600

800

1000

1200

1400

1600

(k) Cost Kpν for M = 3.

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
10

100

200

300

400

500

600

700

800

(l) Cost Kpν for M = 3.

Figure 4: Effect of noise added to image.

22

6 Remarks about Implementation

In practice, while an image can be considered as a map like u : [0, 1] × [0, 1] → [0, 1], it is given as a
discretized version. The domain is usually decomposed into a finite number of pixels (that are then
organized in a two-dimensional grid); let for the rest of this section the number of pixels of some image
considered be N = N ′2 (where N ′ is the image’s width and height).

In addition, the intensity ui corresponding to some pixel i = 1, . . . , N has to be stored on a computer in
some way. This can be done either as a floating-point number, say, ui ∈ [0, 1] (with very fine division into
distinct, possible values), but often this is even done as integer number in a given range ui = 0, . . . , I− 1
which can be seen as an approximation to ũi = ui

I−1 ∈ [0, 1]. Common choices are I = 256 = 28 or
I = 216 (8 bit or 16 bit gray-scale images, respectively). Note that I is used in this section as number of
intensities, while the set of possible intensities will be denoted as I.

Below, I will consider both situations (floating-point (nearly) continuous intensities and “few” discrete
pixel values) and describe how to possibly apply the analysis done and methods described above for them
efficiently. As above, I will concentrate on finding a good segmentation as a set of boundaries b ∈ B in
intensity-space. From there on it is straight-forward to construct the segmented image, of course.

6.1 Preparations

All I need for my analysis is not the real image u, including for instance topological properties of the
domain or information about neighbourship of certain pixels, but instead only the function p, essentially
giving details about “how much” of each intensity is there in the image. Thus we can also in the practical
case transform the image from a grid of pixels into more efficient forms.

In case of floating-point intensities, the preparation I suggest is to use Algorithm 1: Put all intensities
into a one-dimensional array and sort it. This can be done with time-complexity O (N log N) by some
of the usual efficient sorting algorithms, for instance merge-sort or heap-sort. The memory usage is then
exactly the same as storing the original image, so no additional impact. I will in the following assume
that ui ≤ uj for 1 ≤ i < j ≤ N , which represents the image processed in this way.

Algorithm 1 Preparation for floating-point intensities.

Require: Ω is a finite domain with |Ω| = N , ũx ∈ I for x ∈ Ω are the intensities
Ensure: u = (u1, . . . , uN) is a permutation of ũ such that u1 ≤ u2 ≤ · · · ≤ uN

1: u ← empty list
2: for all x ∈ Ω do
3: add ũx to the list u
4: end for
5: sort the list u

If the number of possible intensities I is rather small (say I � N) — as in the integer-range case,
especially with 8 bit pixels —, it seems beneficial to build up a histogram instead. That is, for each
possible intensity value, count how many pixels there are of some intensity:

nt = |{i = 1, . . . , N | ui = t}| (18)

for t ∈ I; but because this set is finite, we’ll assume t = 0, . . . , I−1 in the following. This is described in
Algorithm 2. It has time-complexity O (N) (as one must walk through the image once) and uses memory
of the order O (I), thus even less than the full image.

6.2 dp Integrals

Obviously, it is very important to calculate integrals such as

J(σ, τ, f) =
∫ τ

σ

f dp =
∫

(σ,τ]

f dp (19)

for our discrete images. Note that because of the discretization, it is now important to specify the range
exactly — (σ, τ] instead of [σ, τ] as convention from now on. Those are no longer the same, as p can no
longer be exactly smooth or continuous!

For numerical calculation, we’ll consider Equation 19 in the Riemann-Stieltjes sense. Then let i, j be
given such that

23

Algorithm 2 Preparation for integer intensities.

Require: |Ω| = N and |I| = I are finite, ux ∈ I for x ∈ Ω are the intensities
Ensure: for all t ∈ I, nt satisfies Equation 18
1: for all t ∈ I do
2: nt ← 0
3: end for
4: for all x ∈ Ω do
5: increment nux

6: end for

• σ < ui ≤ uj ≤ τ ,

• uk ≤ σ for all k < i and

• ul > τ for all l > j.

Such i and j can be found using binary search on the sorted array of intensities with time-complexity
O (log N). If this is done, it should be clear that the integral will be defined as

J(σ, τ, f) =
1
N

j∑
k=i

f(uk). (20)

Thus, for floating-point intensities, the cost of one dp integration is roughly O (log N + N) = O (N)
(assuming that the number of pixels with intensity in the range of integration is of the same order of
magnitude as the overall number of pixels (N), which seems reasonable for the complexity estimation).

If there are only few intensities and a histogram is available, Equation 20 reduces to

J(σ, τ, f) =
1
N

τ∑
t=σ+1

ntf(t). (21)

This is even cheaper to calculate, namely of the order O (I).
Note that clearly for σ < τ < ρ, we have

J(τ, ρ, f) = J(σ, ρ, f)− J(σ, τ, f). (22)

Thus, if the function f is fixed but we need to calculate a lot of those integrals for different boundaries,
we can speed calculation up via precalculation. Let σ < I− = u1 be some lower bound for all intensities,
then calculate the values of J(σ, x, f) for all distinct intensities x that appear in the image — those are at
most N or I, depending on the type of image present. Because the sums in Equation 20 or Equation 21
can be built up cumulatively for this (see Algorithm 3 and Algorithm 4), the total time-complexity of
this precalculation is also only O (N) or O (I), respectively.

Algorithm 3 Precalculation of integral for floating-point intensities.
Require: ui for i = 1, . . . , N as per Algorithm 1, a mapping f : I → R
Ensure: ai = J(σ, ui, f) for i = 1, . . . , N and all σ < u1

1: a0 ← 0
2: for i = 1, . . . , N do . Calculate Equation 20 successively.
3: ai ← ai−1 + f(ui)

N
4: end for

When this is done, J(τ, ρ, f) = J(σ, ρ, f) − J(σ, τ, f) can be calculated via two cheap look-ups. For
the floating-point intensity case, we still need to do the binary search, thus the cost of one integration
after doing the precalculation is then O (log N); for a histogram image, it is even O (1)! This procedure
can be compared to finding the indefinite integral (anti-derivative) of a function in order to later derive
the definite integral (maybe for a set of different boundaries) from it.

As a final remark: It may be necessary to calculate an integral as in Equation 19 more precisely with
respect to the boundaries; that is, in a way such that J(σ, τ, f) < J(σ, τ ′, f) for τ < τ ′ even if there is no
pixel ui in the image in-between (such that for instance τ ≤ ui < τ ′). This property corresponds to the
condition p′(t) > 0 we had to introduce in Section 4 to ensure nice behaviour; if this is not done, then
the methods described above may (and do in practice) not work well, as the theoretic assumptions are
violated.

24

Algorithm 4 Precalculation of integral with available histogram.
Require: nt as per Algorithm 2, a mapping f : I → R
Ensure: at = J(σ, t, f) for t ∈ I and all σ < inf I
1: s← 0
2: for t ∈ I in increasing order do . Calculate Equation 21 successively.
3: s← s + ntf(t)

N
4: at ← s
5: end for

In this case, if i is the largest value such that we have ui < τ < ui+1, we can do a linear interpolation
between J(σ, ui, f) and J(σ, ui+1, f) and set for λ = τ−ui

ui+1−ui
∈ (0, 1) the integral as

J(σ, τ, f) = (1− λ)J(σ, ui, f) + λJ(σ, ui+1, f) = J(σ, ui, f) + λ
f(ui+1)

N
. (23)

This can be calculated as efficiently as the original case. By using Equation 22, the lower boundary
can just as well be some arbitrary value. Finding a particular integral with interpolation based on a
precalculation is formalized in Algorithm 5. Of course this is not necessarily a very precise interpolation,
but it does ensure strict monotonicity, which gets lost if we use only the individual pixels or even just
the histogram with few different values (which effectively behaves as if p were a step-function).

Algorithm 5 Finding a dp integral based on precalculation.
Require: a mapping f : I → R and precalculation done for f according to Algorithm 3 or Algorithm 4
Ensure: for I− ≤ σ < τ ≤ I+, integrate(σ, τ, f) returns J(σ, τ, f) as described in the text
1: procedure int upper(τ, f) . Find integral on [I−, τ].
2: if floating-point intensities then
3: find largest i such that ui ≤ τ with binary search
4: t← ai . This is the precalculated value.
5: if ui < τ then
6: λ← τ−ui

ui+1−ui

7: t← t + λ f(ui+1)
N . As per Equation 23.

8: end if
9: return t

10: else
11: find largest s ∈ I such that s ≤ τ . For instance, by rounding τ to an integer.
12: if s = τ then
13: return as . This is the precalculated value.
14: else
15: find smallest t ∈ I with s < τ < t . May be t = s + 1.
16: λ← τ−s

t−s
17: return (1− λ)as + λat

18: end if
19: end if
20: end procedure
21: procedure integrate(σ, τ, f)
22: return int upper(τ, f)− int upper(σ, f) . Application of Equation 22.
23: end procedure

The integrals that are really needed to carry out segmentation either by fixed-point iteration or the
sequential construction of Theorem 17 are those for the functions f(t) = t and f(t) = 1. With those two,
cp ((σ, τ]) can be calculated as in Definition 5. Thus, we should precalculate the integrals for those two
functions. This again has a time-complexity of O (N) or O (I) and is thus also not any more expensive
than just walking over the image once.

6.3 Fixed-Point Iteration

If a set of boundaries b(n) ∈ B is given, with the methods described in Subsection 6.2 we can easily
implement the fixed-point iterations described in Subsection 4.3. All that is needed to calculate b(n+1)

from b(n) is calculation of different values of cp

((
bi

(n), bi+1
(n)
])

.

25

As was already mentioned there, I see two possible implementations based on Definition 7: Either
with Φ that calculates all components of the new segmentation boundaries “at once” (similar to the
Jacobi iteration method for solving linear systems), or based on the functions Ψi and updating one
component at a time (in the spirit of the Gauß-Seidel method). In the latter case, there’s also the choice
of order in which the updates are done — say, forward, backward or symmetric (one forward sweep
followed by a backward one).

In order to apply such an iteration scheme, there are still two points worth mentioning: Getting
an initial guess and a reasonable stopping criterion. As initial segmentation, I suggest to use one
sequentially constructed as described below in Subsection 6.4. Alternatively, a simpler method which
also worked quite well in tests is to use equi-sized initial segments, either in intensity-space (such that
bi+1

(0) − bi
(0) = I+−I−

M holds for i = 0, . . . ,M − 1) or in the original image domain (using the quantile
values of p, that is, such that p(bi

(0)) = i
M).

For the stopping criterion, for a given tolerance ε > 0, one can do the iteration until∥∥∥b(n+1) − b(n)
∥∥∥ < ε (24)

holds for some suitable norm or a maximum number of iterations has been reached. It must be noted
at this point that without the linear interpolation seen in Equation 23, it may (and eventually probably
will) happen that b(n+1) = b(n) holds exactly even when not yet at a fixed-point because the integrals
underlying the iteration update result in exactly the same values despite small changes in the boundaries.
In that case, this can be used as a stopping-criterion as well — but I suggest to do the linear interpolation
and use Equation 24. The fixed-point iteration with Gauß-Seidel update and linear interpolation is
detailed in Algorithm 6.

Algorithm 6 Segmentation via Gauß-Seidel type fixed-point iteration.

Require: integral precalculation for f(t) = 1 and f(t) = t done via Algorithm 3 or Algorithm 4, let
ε > 0, M ≥ 2 and assume that b1 < · · · < bM−1 is an initial segmentation

Ensure: b = (b1, . . . , bM−1) is an approximate fixed-point of Φ fulfilling Equation 24 with ‖·‖∞
1: procedure cp(σ, τ) . Calculate cp ((σ, τ]) according to Definition 5.
2: d← integrate(σ, τ, t 7→ 1) . Procedure defined in Algorithm 5.
3: if d = 0 then
4: return σ
5: else
6: return 1

d · integrate(σ, τ, t 7→ t)
7: end if
8: end procedure
9: repeat

10: δ ← 0
11: for i = 1, . . . ,M − 1 do . Perform b→ Ψi(b) as per Definition 7.

12: c
i− 1

2
p ← cp(bi−1, bi)

13: c
i+ 1

2
p ← cp(bi, bi+1)

14: b′ ← c
i+ 1

2
p +c

i− 1
2

p

2
15: δ ← max(δ, |bi − b′|)
16: bi ← b′

17: end for
18: until δ < ε

For each component-update in the fixed-point iteration, c
i+ 1

2
p and c

i− 1
2

p have to be calculated. If
doing the update with Φ, most of them can be used to calculate the updates of both the lower and upper
neighbouring boundary to speed up the calculation by (nearly) a factor of two. Overall, however, for
each component a fixed number of integrals has to be calculated. Taking precalculation for those into
account, the time cost of each fixed-point iteration is for the floating-point intensity case O (M log N)
and for histogram images O (M). Both of them are rather cheap.

6.4 Sequential Construction of a Fixed-Point

The same sequential construction that is used in the proof of Lemma 16 can be applied numerically
quite efficiently to find a solution to Equation 13 directly. Because of rounding errors and even more so

26

the discrete nature of the image that makes solution of Equation 15 inexact, the result is however not
as good as one might hope. Especially as the construction works “forward” from one component to the
next, the last components will be even more inexact than the first ones, as calculational error cumulates
from b2 onwards up to bM−1. Thus, I suggest to use this procedure to obtain a starting-point for a
fixed-point iteration whose result is actually delivered later as the segmentation.

First, I’ll consider the construction of subsequent boundaries if the first one is given. As this is
done successively, it is without loss of generality enough to assume b0 ≤ b1 given and show how to
construct b2 = β2(b1) (with the notation of Lemma 16). When b0 and b1 are given, c

1− 1
2

p = cp ((b0, b1])

can be calculated by means of integration as usual. Then we know what c
1+ 1

2
p = cp ((b1, b2]) must be,

namely c
1+ 1

2
p = b1 + (b1 − c

1− 1
2

p). Because cp ((b1, b2]) is strictly increasing with respect to b2 for fixed
b1, the solution b2 can be found with interval bisection. Each step during the bisection costs as much
as dp integration costs, thus O (log N) or O (1). The number of necessary steps clearly depends on the
precision sought, but will probably be around the order O (log N) or O (log I). Thus construction of b2

costs O
(
log2 N

)
for floating-point intensities and O (log I) for histogram images.

All together we have to construct not only b2 but all following bi’s as well, this takes M − 1 times
as long — leading to O

(
M log2 N

)
or O (M log I), respectively, for constructing all boundaries from a

given first one. This construction of b2, . . . , bM−1 from b1 is given by Algorithm 7.

Algorithm 7 Construction of subsequent boundaries of a fixed-point.

Require: precalculation of integrals done as also required by Algorithm 6, b0 = I−, b1 ∈ I is given

Ensure: if b1 is small enough, b2, . . . , bM−1 satisfy bi = c
i+ 1

2
p +c

i− 1
2

p

2 for all i = 1, . . . ,M − 2
1: for i = 2, . . . ,M − 1 do
2: c← 2bi−1 − cp(bi−1, bi−2) . Procedure defined in Algorithm 6.
3: if cp(bi−1, I

+) < c then
4: return failure . Can happen if b1 is too large.
5: else
6: find root t of function s 7→ cp(bi−1, s)− c with interval bisection
7: bi ← t
8: end if
9: end for

Finally we want to find a fixed-point without already knowing what b1 is. We have to find a suitable

b1 such that after doing the construction just described also bM−1 = c
M−1+ 1

2
p +c

M−1− 1
2

p

2 holds. (Put another
way, the bM given by the construction should actually match the upper boundary I+ of intensities.) For
this, as in the proof of Theorem 17, note that for very small b1, the last boundary will be less than
what it should be; and for large b1, it will be too large. Thus again, a binary search for b1 will reveal
a matching one. As before, roughly O (log N) or O (log I) steps are necessary in this search. So, we
can sequentially construct a fixed-point with time-complexity O

(
M log3 N

)
or O

(
M log2 I

)
according

to Algorithm 8.
When there are more than just one fixed-points, the sequentially constructed b ∈ B may not be the

solution to our segmentation problem. But note that for the task of segmentation, it is just important
to find out which pixels should belong to which segment. Thus the boundaries have to be specified only
up to a precision such that they separate individual pixels or histogram-entries. Thus, an alternative
approach is to try all N or I intensities present in the image as b1 and pick those that satisfy the
fixed-point criterion. Among the resulting fixed-points, the optimal segmentation is that which results in
the lowest cost-value. For this extended algorithm, the complexity becomes O

(
MN log2 N

)
for floating-

point intensities and O (MI log I) for histograms. This is of course more expensive than the binary-search
approach, but still (especially for a low number M of segments) basically of the same order of magnitude
than going over all pixels once, which clearly is the “absolute minimum” for any image processing.

6.5 Finding Fixed-Points Summarized

So summarizing what was described in the previous subsections: First of all, for a given image as
set of pixels, in a preparation sweep those pixels have to be sorted or counted into histogram bins, see
Algorithm 1 and Algorithm 2. Then, with Subsection 6.4 and Algorithm 8 a fixed-point (or multiple fixed-
points) can be sequentially constructed; alternatively, one can obtain some other initial segmentation.
When this is done, I suggest starting there with the fixed-point iteration described in Subsection 4.3 and

27

Algorithm 8 Sequential construction of a fixed-point of Φ.
Require: precalculation of integrals done as also required by Algorithm 6
Ensure: b = (b1, . . . , bM−1) is a fixed-point
1: procedure error(b1) . Positive if b1 is too large and negative if b1 is too small.
2: construct b2, . . . , bM−1 as per Algorithm 7
3: if construction failed then
4: return ∞ . This means that b1 is too large.
5: else
6: c

M−1− 1
2

p ← cp(bM−2, bM−1) . Procedure defined in Algorithm 6.

7: c
M−1+ 1

2
p ← cp(bM−1, I

+)

8: return bM−1 − c
M−1+ 1

2
p +c

M−1− 1
2

p

2
9: end if

10: end procedure
11: find root b1 of function θ 7→ error(θ) with interval bisection
12: construct b2, . . . , bM−1 as per Algorithm 7 . This will never fail for a root.

Algorithm 6 to refine the initial boundaries further. Finally, from the boundaries in intensity-space it is
trivial to calculate the corresponding segments’ sub-domains and intensities, to get a segmented image.
This is put together in Algorithm 9.

Algorithm 9 Full algorithm for image segmentation as described herein.
Require: u : Ω→ I is an image where Ω and I are finite sets, M ≥ 2 is given
Ensure: s is a segmentation of u with M segments
1: do preparation with Algorithm 1 or Algorithm 2
2: precalculate integrals with Algorithm 3 or Algorithm 4 for the functions f(t) = 1 and f(t) = t
3: b0 ← I−, bM ← I+

4: construct b = (b1, . . . , bM−1) with Algorithm 8
5: call Algorithm 6 on b
6: s ← empty image
7: for i = 1, . . . ,M do
8: c← cp(bi−1, bi) . Optimal segment-intensity per Theorem 2.
9: for all x ∈ Ω with bi−1 < ux ≤ bi do . Twice non-strict inequality if i = 1.

10: sx ← c
11: end for
12: end for

As I think this is the most common case, let’s consider an image with I different intensities (rather
than unconstrained floating-point values for intensities with a lot of different possibilities). Then the
preparation building up the histogram with O (N) is the most expensive step. Every later one does not
depend at all on the image size N , but only the number I of histogram bins. With I = 256 as a usual
value, this is very cheap. Reduction of the original image to only its distribution function p (or in this
case, the histogram) gives a very significant performance improvement compared to working with the
original grid of pixels.

6.6 Adding Noise

By Theorem 19 we saw that adding noise to an image helped to ensure that the resulting distribution
function is natural. While for a lot of “real” images this criterion will usually already be fulfilled (either
because the image is smooth in itself or because there is already some amount of noise captured with the
image “automatically”), sometimes it may even be helpful to add noise artificially in order to mollify p.
For images like Figure 2b, the methods detailed in this section do not work properly because over a wide
range changing the segment boundaries has no effect at all on the segmentation or cp values as there are
only a very small number of intensities actually used in the image — and thus p is discontinuous and
flat.

If this is the case, as can be seen in Figure 4 it helps a lot to add noise and segment the resulting image
instead. A possible strategy is to add a rather large level of noise, find the corresponding segmentation;
then add a smaller amount of noise to the original image and refine the found segmentation with a
number of fixed-point iterations, and so on — successively reducing the amount of noise added, until

28

the image processed already comes very close to the original. This process works well for Figure 2b as
can be seen in Section 7 and will probably do so for a lot of similar cases. However, one must be aware
that theoretically there is no guarantee that a small change in the noise level only changes the optimal
solution slightly. In fact, while the cost function depends continuously on the noise level added, its global
minimum might not. For practical purposes though, it is at least worth a try in case the segmentation
methods are found to be inefficient or divergent for the original image.

I also want to remark that in order to add noise to the image, it is not necessary to do so on the original
set of pixels. Instead, suppose the image is first transformed into a histogram of intensities — note that
the histogram corresponds to the density p′ instead of the distribution p. Then a smoothed histogram,
corresponding to an image with noise added, can be calculated directly via a numerical convolution of
the original histogram with the density function of the noise. This convolution can be compared to
Equation 17 and motivated in a way similar to the proof of Lemma 18, where the distribution p is
smoothed.

29

(a) Original image. (b) Equi-distant. (c) Constructed.

(d) Iteration equi-distant. (e) Iteration constructed. (f) Method of [7].

Figure 5: Segmentation results for MR image.

7 Computational Results

For the histogram case (in particular, using 8 bit gray-scale) I implemented the methods described in
Section 6 with GNU Octave [1]. In this section I will present the results. Computation was done on a
GNU/Linux system with Octave 3.0.3, Mobile AMD Sempron 3100+ processor and 512 MiB of RAM.
As discussed in Section 6, time-complexity is not the limiting factor for my algorithms, thus the code
was not implemented in the most efficient manner. Additionally, Octave is an interpreted platform also
not very efficient for certain patterns. What is more important are the quantitative results with respect
to number of fixed-point iterations and minimum cost at the solution.

I always used 128 × 128 pixel images with integer intensities in the range 1–256. Segmentation was
done targeting M = 5 different segments. For the fixed-point iteration, I used

∥∥b(n+1) − b(n)
∥∥
∞ < 10−3

as stopping criterion (boundaries are equally effective when rounded to integers, thus this stopping
criterion gives much more precision than actually necessary); for the sequential fixed-point construction,
the tolerance for interval bisections was chosen as 10−6.

First, I constructed two initial segmentations: One with equi-distant boundaries (called “Equi-
distant” in the result tables and figures) and one with the sequential fixed-point construction as in
Subsection 6.4, called “Constructed”. Then I used fixed-point iteration with the “Jacobi” and with
the “Gauß-Seidel” style, starting from those two initial values. These results are listed as “Iteration
equi-distant” and “Iteration constructed”, respectively. As a comparison, I also used the segmentation
method described in [7, p. 9] with γ = 0.5 and µt = 10−3.

Note that the “Jacobi” and “Gauß-Seidel” iterations always resulted in precisely the same result, and
only the number of iterations is different (fewer needed for the latter type). Because of this, I will always
combine those two in the results below.

The image in Figure 5a is seemingly very easy to segment, all result images in Figure 5 look rather
nice (even that where just the equi-distant boundaries are used without further processing). In Table 1,
it can be seen that also the resulting segmentation qualities are nearly the same, although the fixed-point
methods (from both starting points alike) slightly beat the sequential fixed-point construction alone and
the method of [7]. The solution boundaries are also nearly identical for both fixed-point methods (they

30

Result Cost Iterations
Jacobi / GS

Solution Boundaries

Equi-distant 100.17 51.20, 102.40, 153.60, 204.80
Constructed 96.87 47.31, 111.00, 158.49, 211.43
Iteration equi-distant. 95.95 43 / 36 47.31, 110.33, 155.89, 206.08
Iteration constructed. 95.95 45 / 39 47.31, 110.33, 155.91, 206.10
Method of [7]. 97.13

Table 1: Segmentation results for MR image.

(a) Original image. (b) Equi-distant. (c) Constructed.

(d) Iteration equi-distant. (e) Iteration constructed. (f) Method of [7].

Figure 6: Segmentation results for a natural picture.

are the same when rounded), but with the boundaries of the sequentially constructed fixed-point without
refinement it can be seen that the boundaries get more and more inexact the larger their indices are (this
is the result of error accumulation while successively constructing the boundaries from smaller to larger
ones).

The natural image in Figure 6 shows more variation and gradients than Figure 5a, and it can be
seen that in this case the trivial segmentation with equi-distant segments alone is not as good as the
other methods; for instance, it does not capture the face as well and also introduces more artefacts in
the background. The cost-landscape of this image is defined very clearly, and so all methods including
the sequential fixed-point construction result at nearly the same segmentation (as can be verified from
Table 2). The method of [7] is slightly (but notably) worse with respect to the cost; there are also some
visible differences between Figure 6f and Figure 6e, although it is probably not clear to define any one
of those as “visually better” than the other.

For the phantom image Figure 7a, the results in Figure 7 are pretty bad visually. The problem
here is that the image’s distribution function p (as seen in Figure 2e) is rather irregular (completely
flat except for a few discontinuities). As can be seen in Table 3, the iterations applied starting from
the equi-distant initial condition change the boundaries, but the cost is unaltered. This is because all
change takes place within the flat regions only, where it does not affect anything at all. The sequential
fixed-point construction failed completely to identify a good result for similar reasons. Note however

31

Result Cost Iterations
Jacobi / GS

Solution Boundaries

Equi-distant 147.91 51.20, 102.40, 153.60, 204.80
Constructed 112.67 60.43, 105.66, 139.73, 166.60
Iteration equi-distant. 112.67 52 / 45 60.43, 105.67, 139.74, 166.60
Iteration constructed. 112.67 1 / 1 60.43, 105.66, 139.73, 166.60
Method of [7]. 117.36

Table 2: Segmentation results for a natural picture.

(a) Original image. (b) Equi-distant. (c) Constructed.

(d) Iteration equi-distant. (e) Iteration constructed. (f) Method of [7].

Figure 7: Segmentation results for original phantom image.

Result Cost Iterations
Jacobi / GS

Solution Boundaries

Equi-distant 26.56 51.20, 102.40, 153.60, 204.80
Constructed 1584.61 13.96, 26.00, 26.00, 26.00
Iteration equi-distant. 26.56 16 / 16 28.04, 79.01, 103.00, 179.50
Iteration constructed. 27.54 5 / 5 14.00, 27.00, 41.06, 155.56
Method of [7]. 25.57

Table 3: Segmentation results for phantom image.

32

(a) Noisy image. (b) Equi-distant. (c) Constructed.

(d) Iteration equi-distant. (e) Iteration constructed. (f) Method of [7].

Figure 8: Segmentation results for phantom image with 1 % of noise added.

Result Cost Iterations
Jacobi / GS

Solution Boundaries

Equi-distant 25.56 51.20, 102.40, 153.60, 204.80
Constructed 1.51 32.97, 58.23, 75.00, 244.53
Iteration equi-distant. 0.99 5 / 5 33.62, 69.49, 93.38, 177.12
Iteration constructed. 1.51 3 / 3 32.97, 58.23, 71.11, 165.45
Method of [7]. 6.53

Table 4: Segmentation results for phantom image with 1% of noise added.

that also the method of [7] did not reproduce the original image as well as it possibly could have done.
As the image consists only of 5 different intensities, the segmentation can be optimal in theory.

If we add only 1 % of noise to the phantom image, results are much better (as predicted in the
analysis in Section 5). Figure 8a is the noisy version of Figure 7a, and for Figure 8b to Figure 8e, the
segmentation boundaries were calculated with the respective methods based on the noisy image, but then
applied to the original one. The method of [7] was applied to the noisy image to get Figure 8f, and here
the noise also helped to improve greatly on Figure 7f. The costs in Table 4 are calculated as ‖u− s‖2L2

based on the reconstructed images rather than via Kp(b) and the boundaries, in order to give meaningful
results for this case. Both the sequential fixed-point construction in Figure 8c and the iteration methods
in Figure 8d give very good results, as does the method of [7]. The result of the fixed-point iteration
starting from the equi-distant segmentation is “perfect” visually and has slightly lower cost than the
sequentially constructed fixed-point, which results in the same segmentation as the fixed-point iteration
starting from it. These two possibilities are seemingly distinct fixed-points (local minima) leading to
slightly different results.

33

8 Conclusion

In the preceding sections, I have formulated the problem of image segmentation using probabilistic
techniques in intensity-space. As consequence, instead of optimizing the shape of segment sub-domains
(which is an infinite-dimensional problem) I only have to consider boundaries between segments given
as intensities. As I only consider gray-scale images, this is very easy and leads to a finite-dimensional
optimization problem. For this problem, the optimality system can be derived and takes a very nice
form. In particular, solving the system with a fixed-point iteration corresponds to the well-known k-
means clustering algorithm applied to image segmentation. This means, that my work gives a measure
theoretic derivation and justification of this algorithm in certain segmentation cases.

While not all images are suitably smooth and regular for my purposes, I showed that if random noise
is applied to any image (either artificially exactly for that purpose or by the practical measurement
that was used to obtain the image to process), the necessary conditions are satisfied. So for practical
purposes, the methods described can be applied.

The segmentation algorithms proposed are very efficient, because the reformulation also gives al-
gorithmic advantages. Especially for the common case of images represented with a small number of
possible gray-levels (like 256 for 8 bit images), where after a preparation step involving to walk over the
image once, the image’s size does not matter any longer at all. Finally, the methods were implemented
and demonstrated to give good results for different example images.

Still, there are a lot of areas open for further research. For one, I was not able to prove full convergence
of the fixed-point iteration proposed or that a found result is optimal; actually, it needs not be so. But
possibly further restrictions on the image processed could lead to a unique solution and full theoretical
justification. And secondly, an interesting point to consider is the possibility to generalize the ideas used
herein for images not necessarily gray-scale; that is, with multi-dimensional intensities instead of only
I ⊂ R. There, one can still define a distribution function and use it instead of the original image, but
its domain will be the new, extended intensity-space instead of R. Thus boundaries there can no longer
be represented as a finite-dimensional vector. As a way out, it may be noted that Equation 13 can be
interpreted to give the boundaries when segment intensities are fixed, leading to a Voronoi tessellation
of the intensity-space as seen by the proof of Theorem 14. The centers instead of boundaries are still
finite-dimensional even in the general case of higher-dimensional intensities. Thus this may be a way to
formulate a still finite-dimensional optimization problem for such images, too.

34

References

[1] GNU Octave. http://www.gnu.org/software/octave/.

[2] Maxima. http://maxima.sourceforge.net/.

[3] Robert B. Ash. Real Analysis and Probability, volume 11 of Probability and Mathematical Statistics.
Academic Press, New York, 1972.

[4] Gilles Aubert and Pierre Kornprobst. Mathematical Problems in Image Processing. Springer, second
edition, 2006.

[5] Martin Barner and Friedrich Flohr. Analysis I. de Gruyter, New York, fourth edition, 1991.

[6] Lawrence C. Evans and Ronald F. Gariepy. Measure Theory and Fine Properties of Functions. CRC
Press, Boca Raton, 1992.

[7] Michael Hintermüller and Antoine Laurain. Multiphase image segmentation and modulation recovery
based on shape and topological sensitivity. SFB Report, 2008-015, 2008. Graz, Austria.

[8] Stephen L. Keeling, Michael Hintermüller, Florian Knoll, Daniel Kraft, and Antoine Laurain. A Total
Variation Based Approach to Correcting Surface Coil Magnetic Resonance Images. SFB Report,
2010-016, 2010. Graz, Austria.

[9] David J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University
Press, Cambridge, 2003.

35

http://www.gnu.org/software/octave/
http://maxima.sourceforge.net/

	Introduction
	Topological Derivatives, ``Best'' Segmentations
	The Distribution and Cost Functions
	Distribution
	Cost Function
	Examples

	Solving the Optimality System
	Continuity and Differentiability
	Optimality Condition
	Fixed-Point Iteration
	Sequential Construction of the Fixed-Point
	Non-Unique Fixed-Points

	Adding Noise to the Image
	Remarks about Implementation
	Preparations
	dp Integrals
	Fixed-Point Iteration
	Sequential Construction of a Fixed-Point
	Finding Fixed-Points Summarized
	Adding Noise

	Computational Results
	Conclusion

