Bachelorarbeit Elementare Zahlentheorie im Ring $\mathbb{Z}[\omega]$

Stefan Rosenberger

Betreuer: Dr.rer.nat. Florian Kainrath

3. November 2010

Inhaltsverzeichnis

1	Grundlegende Eigenschaften von $\mathbb{Z}[\omega]$	2
2	Prime Elemente in $\mathbb{Z}[\omega]$	7
3	Mächtigkeit von $\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$	12
4	Zyklizität der Restklassengruppe $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)^{\times}$	15
Li	Literatur	

1 Grundlegende Eigenschaften von $\mathbb{Z}[\omega]$

Der Ring $\mathbb{Z}[\omega] = \{a + b\omega | a, b \in \mathbb{Z}\}$, mit $\omega = \frac{-1 + i\sqrt{3}}{2}$, ist ein Unterring der komplexen Zahlen \mathbb{C} . Als solcher ist $\mathbb{Z}[\omega]$ sogar ein Integritätsbereich, in dem jedes $x \in \mathbb{Z}[\omega]$ eine eindeutige Darstellung $x = a + b\omega$ mit $a, b \in \mathbb{Z}$ hat.

Speziell ist ω eine Nullstelle des Polynoms $P(X) = X^2 + X + 1$. Für ein $z \in \mathbb{C}$ sei wie üblich \overline{z} das Komplex-konjungierte von z.

Lemma 1.1. Es gilt:

1.
$$\omega^2 = -\omega - 1 = \overline{\omega}$$

2.
$$\omega \cdot \overline{\omega} = 1$$

Beweis. 1. Wegen $\omega^2 + \omega + 1 = 0$ folgt unmittelbar: $\omega^2 = -\omega - 1 = \frac{\pm 1 - i\sqrt{3}}{2} - 1 = \frac{-1 - i\sqrt{3}}{2} = \overline{\omega}$.

$$2. \ \omega \cdot \overline{\omega} = (\frac{-1+i\sqrt{3}}{2})\overline{(\frac{-1+i\sqrt{3}}{2})} = (\frac{-1+i\sqrt{3}}{2})(\frac{-1-i\sqrt{3}}{2}) = \frac{1}{4}(1-i\sqrt{3}+i\sqrt{3}+3) = 1$$

Lemma 1.2. Sei $D = \{r + s\omega | r, s \in \mathbb{Q}\}$ und

$$N: \left\{ \begin{array}{c} D \to \mathbb{Q}_{\geq 0} \\ x \mapsto x \cdot \overline{x} \end{array} \right.$$

dann gelten:

- 1. $N(x) = 0 \iff x = 0$
- 2. Für die Abbildung N gilt N(1) = 1, und für alle $x, y \in D$ gilt N(xy) = N(x)N(y). Für die Einschränkung von N auf $\mathbb{Z}[\omega]$ gilt dass

$$N|_{\mathbb{Z}[\omega]}: \left\{ \begin{array}{c} \mathbb{Z}[\omega] \to \mathbb{N} \\ x \mapsto x \cdot \overline{x} \end{array} \right.$$

ein Halbgruppenhomomorphismus ist.

- 3. Für $x \in \mathbb{Z}[\omega]$ gilt: $N(x) = 1 \iff x \in \mathbb{Z}[\omega]^{\times}$.
- 4. Es gibt kein $x \in \mathbb{Z}[\omega]$ sodass N(x) = 2 gilt.

Beweis. Für $x \in D$ seien $r, s \in \mathbb{Q}$ sodass $x = r + s\omega$ gilt. Dann folgt $N(x) = x\overline{x} = (r + s\omega)\overline{(r + s\omega)} = (r + s\omega)(r + s\overline{\omega}) = r^2 + rs\overline{\omega} + rs\omega + s^2\overline{\omega}\omega = r^2 + rs(\omega^2 + \omega) + s^2 = r^2 - sr + s^2$, womit $N(x) \in \mathbb{Q}$ folgt. Wegen $N(x) = x\overline{x} = |x| \ge 0$ folgt dass $N(x) \in \mathbb{Q}_{\ge 0}$.

- 1. Sei $x \in D$. $N(x) = x\overline{x} = 0 \Longleftrightarrow x = 0 \text{ oder } \overline{x} = 0 \Longleftrightarrow x = 0$
- 2. $N(1) = \overline{1} \cdot 1 = 1$ Seien nun $x, y \in D$. Dann gilt $N(xy) = (xy)\overline{(xy)} = xy\overline{xy} = x\overline{x}y\overline{y} = N(x)N(y)$. Sei nun $x \in \mathbb{Z}[\omega]$, sodass $x = a + b\omega$ mit $a, b \in \mathbb{Z}$ gilt. Dann folgt $N(x) = a^2 - ab + b^2 \in \mathbb{N}$, und damit die Behauptung.
- 3. " \Rightarrow " Sei $x \in \mathbb{Z}[\omega]$ mit N(x) = 1, dann folgt $x\overline{x} = \overline{x}x = 1$ Somit ist \overline{x} inverses Element von x, und daher gilt $x \in \mathbb{Z}[\omega]^{\times}$.
 - " \Leftarrow " Sei nun $x \in \mathbb{Z}[\omega]^{\times}$. Dann gibt es ein $y \in \mathbb{Z}[\omega]^{\times}$ sodass gilt: $xy = 1 \Rightarrow x\overline{xy}y = 1 \Rightarrow N(x)N(y) = 1$.

Wie in 2 gezeigt, ist N(y) eine positive natürliche Zahl, womit N(x) = 1 gilt.

4. Angenommen es gibt ein $x \in \mathbb{Z}[\omega]$, sodass N(x) = 2 und $x = a + b\omega$, mit $a, b \in \mathbb{Z}$, gilt. Dann folgt $2 = a^2 - ab + b^2$. Das ist gleichbedeutend mit $8 = 4a^2 - 4ab + 4b^2 = (2a - b)^2 + 3b^2$. Falls $|b| \ge 2$ gelten würde, so folgt $3b^2 > 8$, was nicht sein kann. Also bleiben die Fälle $b = \pm 1$ und b = 0 zu betrachten.

- **1.Fall)** Sei b = 0 so folgt $(2a)^2 = 8$. Da 8 in \mathbb{Z} jedoch kein Quadrat ist, kann das nicht sein.
- **2.Fall)** Sei $b = \pm 1$ so folgt $(2a \pm 1)^2 + 3 = 8$ und daher $(2a \pm 1)^2 = 5$. Auch 5 ist in \mathbb{Z} kein Quadrat, womit dieser Fall nicht zutreffend sein kann.

Widerspruch.

Lemma 1.3. Sei $x \in \mathbb{Z}[\omega]$, sodass $x = a + b\omega$ mit $a, b \in \mathbb{Z}$ gilt. Dann gelten

- 1. $\overline{x} = a b b\omega \in \mathbb{Z}[\omega]$.
- 2. $\mathbb{Z}[\omega]^{\times} = \{1, -1, \omega, -\omega, \omega^2, -\omega^2\}.$
- 3. $\mathbb{Z}[\omega]^{\times}$ ist zyklisch.
- 4. Die Abbildung

$$g: \left\{ \begin{array}{c} \mathbb{Z}[\omega] \longrightarrow \mathbb{Z}[\omega] \\ x \longmapsto \overline{x} \end{array} \right.$$

ist ein Ringisomorphismus.

Beweis. 1. Sei $x \in \mathbb{Z}[\omega]$ sodass $x = a + b\omega$ mit $a, b \in \mathbb{Z}$. Dann gilt: $\overline{x} = \overline{a + b\omega} = a + b\overline{\omega} = a + b(-\omega - 1) = a - b - b\omega \in \mathbb{Z}[\omega]$.

2. z.z.: $\mathbb{Z}[\omega]^{\times} \subset \{1, -1, \omega, -\omega, \omega^2, -\omega^2\}$

Sei $x = a + b\omega \in \mathbb{Z}[\omega]^{\times}$. Dann gilt: $1 = a^2 - ab + b^2$ bzw. $4 = 4a^2 - 4ab + 4b^2 = (2a - b)^2 + 3b^2$.

Hierfür gibt es zwei mögliche Lösungen:

- (a) $2a b = \pm 1 \text{ und } b = \pm 1$
- (b) $2a b = \pm 2 \text{ und } b = 0$

(denn würde |b| > 1 gelten so würde $3b^2 > 4$ folgen)

Somit sind sechs Fälle zu betrachten, welche einfach nachzurechnen sind:

- **1.Fall** Sei 2a b = 1 und $b = 1 \Rightarrow 2a 1 = 1 \Rightarrow a = 1$ $\Rightarrow x = 1 + \omega$ und mit $\omega^2 + \omega + 1 = 0$ folgt $x = -\omega^2$.
- **2.Fall** Sei 2a b = 1 und b = -1 $\Rightarrow 2a + 1 = 1 \Rightarrow 2a = 0 \Rightarrow a = 0 \Rightarrow x = -\omega$.
- **3.Fall** Sei 2a b = -1 und b = 1
- $\Rightarrow 2a-1=-1 \Rightarrow 2a=0 \Rightarrow a=0 \Rightarrow x=\omega.$ **4.Fall** Sei 2a-b=-1 und b=-1
- $\Rightarrow 2a+1=-1 \Rightarrow 2a=-2 \Rightarrow a=-1 \Rightarrow x=-1-\omega=\omega^2.$ 5. Fall Sei 2a-b=2 und b=0
- $\Rightarrow 2a = 2 \Rightarrow a = 1 \Rightarrow x = 1.$ **6.Fall** Sei 2a b = -2 und b = 0 $\Rightarrow 2a = -2 \Rightarrow a = -1 \Rightarrow x = -1.$

Wo mit folgt $\mathbb{Z}[\omega]^\times \subset \{1,-1,\omega,-\omega,\omega^2,-\omega^2\}.$

z.z.: $\{1, -1, \omega, -\omega, \omega^2, -\omega^2\} \subset \mathbb{Z}[\omega]^{\times}$

 $\mathbb{Z}[\omega]^{\times}$ ist eine Gruppe, und nach 1.1 gilt: $-1, \omega \in \mathbb{Z}[\omega]^{\times}$. Daher folgt die Behauptung.

Und somit gilt $\mathbb{Z}[\omega]^{\times} = \{1, -1, \omega, -\omega, \omega^2, -\omega^2\}.$

3. z.z.: $\mathbb{Z}[\omega]^{\times} = \langle -\omega \rangle$

Für $-\omega \in \mathbb{Z}[\omega]^{\times}$ gilt mit 1.1

- $\bullet \ (-\omega)^2 = \omega^2.$
- $(-\omega)^3 = -\omega \cdot \omega^2 = -1$.
- $(-\omega)^4 = -1 \cdot (-\omega) = \omega$.
- $(-\omega)^5 = \omega \cdot (-\omega) = -\omega^2$.
- $(-\omega)^6 = (-\omega^2) \cdot (-\omega) = 1.$

Somit wird $\mathbb{Z}[\omega]^{\times}$ von $-\omega$ erzeugt.

4. Aus den bekannten Eigenschaften von $\bar{\cdot}$ folgt, dass g ein Ringhomomorphismus ist mit $g \circ g = id$. Daraus resultiert die Behauptung.

Definition 1.4. Seien $n, m \in \mathbb{Z}[\omega]$

- 1. m heißt assoziiert zu n falls es ein $\nu \in \mathbb{Z}[\omega]^{\times}$ gibt sodass $\nu m = n$ gilt. Dann schreiben wir $m \sim n$.
- 2. m heißt **Teiler** von n falls es ein $x \in \mathbb{Z}[\omega]$ gibt sodass mx = n gilt. In diesem Fall sagen wir m teilt n und schreiben m|n.
- 3. m heißt **echter Teiler** von n, falls m Teiler von n ist, und m weder Einheit noch zu n assoziiert ist.
- 4. Sei $n \in \mathbb{Z}[\omega] \setminus (\mathbb{Z}[\omega]^{\times} \cup \{0\})$. n heißt **Primelement** falls n keinen echten Teiler hat.

Lemma 1.5. Assoziiertheit ist eine Äquivalenzrelation auf $\mathbb{Z}[\omega]$. Insbesondere gilt für $x \in \mathbb{Z}[\omega]$ genau dann $x \sim 1$, wenn $x \in \mathbb{Z}[\omega]^{\times}$ ist.

Beweis. Seien $x, y, z \in \mathbb{Z}[\omega]$.

reflexiv: Es gilt $1 \in \mathbb{Z}[\omega]^{\times}$, und somit $1 \cdot x = x$ womit $x \sim x$ gilt.

<u>symmetrisch:</u> Sei $x \sim y$, dann existiert ein $\nu \in \mathbb{Z}[\omega]^{\times}$ sodass $\nu x = y$. Das ist gleichbedeutend mit $x = \nu^{-1}y$, und wegen $\nu^{-1} \in \mathbb{Z}[\omega]^{\times}$ folgt $y \sim x$.

<u>transitiv:</u> Sei $x \sim y$ und $y \sim z$ dann existieren $\nu, \eta \in \mathbb{Z}[\omega]^{\times}$ sodass $\nu x = y$ und $\eta y = z$. Womit $\nu x = \eta^{-1} z$ folgt und daher $\eta \nu x = z$ gilt. Wegen $\eta \nu \in \mathbb{Z}[\omega]^{\times}$ folgt $x \sim z$.

Sei nun $x \in \mathbb{Z}[\omega]$ sodass $x \sim 1$ gilt. Dann existiert ein $\nu \in \mathbb{Z}[\omega]^{\times}$ sodass $x\nu = 1$. Womit $x \in \mathbb{Z}[\omega]^{\times}$ folgt. Andererseits ist $x \in \mathbb{Z}[\omega]^{\times}$, so ist auch $x^{-1} \in \mathbb{Z}[\omega]^{\times}$ und es gilt $xx^{-1} = 1$. Und daher folgt $x \sim 1$.

Lemma 1.6. Seien $a, b \in \mathbb{Z}[\omega]$. Dann gelten:

- 1. $b|a \iff a\mathbb{Z}[\omega] \subset b\mathbb{Z}[\omega]$
- 2. $a \sim b \iff a|b \text{ und } b|a \iff a\mathbb{Z}[\omega] = b\mathbb{Z}[\omega]$
- 3. b ist ein echter Teiler von $a \iff a\mathbb{Z}[\omega] \subsetneq b\mathbb{Z}[\omega] \subsetneq \mathbb{Z}[\omega]$
- 4. Sei a prim und b|a dann gilt $b \sim a$ oder $b \sim 1$.

Beweis. Seien $a, b \in \mathbb{Z}[\omega]$.

- 1. " \Rightarrow " Gelte b|a, dann gibt es ein $q \in \mathbb{Z}[\omega]$ sodass a = bq gilt. Sei nun $x \in a\mathbb{Z}[\omega]$, dann existiert ein $p \in \mathbb{Z}[\omega]$ sodass $x = ap = bqp \in b\mathbb{Z}[\omega]$. Damit folgt $a\mathbb{Z}[\omega] \subset b\mathbb{Z}[\omega]$.
 - "\(=\)" Es gelte nun $a\mathbb{Z}[\omega] \subset b\mathbb{Z}[\omega]$.
 Dann folgt $a \in b\mathbb{Z}[\omega]$ also gibt es ein $q \in \mathbb{Z}[\omega]$ sodass a = bq. Womit b teilt a gilt.
- 2. Falls a = 0 oder b = 0 gilt ist die Aussage klar, seien also nun $a \neq 0$ und $b \neq 0$.
 - $a \sim b \Rightarrow a|b \text{ und } b|a$:

Sei $a \sim b$. Dann gibt es ein $x \in \mathbb{Z}[\omega]^{\times}$ sodass bx = a. Womit $b = ax^{-1}$ folgt und daher a|b und b|a gilt.

 $\frac{a|b \text{ und } b|a \Rightarrow a\mathbb{Z}[\omega] = b\mathbb{Z}[\omega]}{\text{Folgt unmittelbar aus 1.}}$

 $a\mathbb{Z}[\omega] = b\mathbb{Z}[\omega] \Rightarrow a \sim b$:

Sei $a\mathbb{Z}[\omega] = b\mathbb{Z}[\omega]$. Da $a \in b\mathbb{Z}[\omega]$ und $b \in a\mathbb{Z}[\omega]$ gilt, gibt es $c, d \in \mathbb{Z}[\omega]$ sodass a = cb und b=da. Damit folgt a=cb=cda. Wegen $a\in\mathbb{C}\setminus\{0\}$ gilt 1=cd=dc, und daher $c,d\in\mathbb{Z}[\omega]^{\times}$ gilt. Womit $a \sim b$ folgt.

- 3. Da b ein echter Teiler von a ist gilt insbesondere $b \neq 0, b \neq 1$ und $a \nsim b$. Nach 2 folgt dass $a \nsim b \Leftrightarrow a\mathbb{Z}[\omega] \neq b\mathbb{Z}[\omega]$. Nach 1 gilt auch $a\mathbb{Z}[\omega] \subset b\mathbb{Z}[\omega]$. Wegen $1 \in \mathbb{Z}[\omega]$ folgt nun $b\mathbb{Z}[\omega] \subsetneq \mathbb{Z}[\omega]$.
 - Damit folgt die Aussage.

4. Da a prim ist und b|a gilt, folgt $b \in \mathbb{Z}[\omega]^{\times}$ oder $b \sim a$. Falls $b \in \mathbb{Z}[\omega]^{\times}$ ist, so folgt die Behauptung mit 1.5.

Lemma 1.7. Seien $x, y \in \mathbb{Z}[\omega]$ und $y \neq 0$. Dann existieren $\gamma, \rho \in \mathbb{Z}[\omega]$ mit $x = \gamma y + \rho$ und $N(\rho) < N(y)$. Dabei ist N die eingeschränkte Abbildung aus 1.2.

Beweis. Seien $x, y \in \mathbb{Z}[\omega]$ mit $y \neq 0$ womit N(y) > 0 gilt, und $D = \{r + s\omega | r, s \in \mathbb{Q}\}$. Dann folgt

$$\frac{x}{y} = \frac{x\overline{y}}{y\overline{y}} = \frac{x\overline{y}}{N(y)} =: r + s\omega \in D.$$

Dabei sind r,s rationale Zahlen. Insbesondere existieren $m,n\in\mathbb{Z}$ mit $|r-m|\le\frac{1}{2}$ und $|s-n|\le\frac{1}{2}$. Setze nun $\gamma=m+n\omega\in\mathbb{Z}[\omega]$. Dann gilt $N(\frac{x}{y}-\gamma)=(r-m)^2-(r-m)(s-n)+(s-n)^2\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}<1$. Sei nun $\rho=x-\gamma y\in\mathbb{Z}[\omega]$. Dann folgt $N(\rho)=N(x-\gamma y)=N(y(\frac{x}{y}-\gamma))=N(y)N(\frac{x}{y}-\gamma)< N(y)$. \square

Proposition 1.8. $\mathbb{Z}[\omega]$ ist ein Hauptidealring.

Beweis. Sei $I \subset \mathbb{Z}[\omega]$ ein Ideal. Da $\{0\}$ in jedem Ring ein Hauptideal ist, sei ohne Einschränkung $I \neq \{0\}$. Damit gilt $I \setminus \{0\} \neq \emptyset$. Daher gibt es ein $x \in I$ sodass $N(x) = \min\{N(a) | a \in I \setminus \{0\}\}$ ist. Behauptung: $I = x\mathbb{Z}[\omega]$.

Zeige zuerst $x\mathbb{Z}[\omega] \subset I$. Dies ist jedoch klar, denn I ist ein Ideal und $x \in I$. Daher gilt für alle $y \in \mathbb{Z}[\omega]$ dass $xy \in I$ ist. Woraus $x\mathbb{Z}[\omega] \subset I$ folgt.

Sei nun umgekehrt $y \in I$. Wie in 1.7 gezeigt existieren $a, b \in \mathbb{Z}[\omega]$, sodass y = ax + b und N(b) < N(x)gilt. Damit folgt $b = y - ax \in I$ denn $x, y \in I$.

Falls $b \neq 0$ gilt, so ist N(x) nicht das Minimum von $\{N(a)|a \in I \setminus \{0\}\}$ (wegen $b \in I$), was nicht sein

Daher gilt b = 0, womit folgt $y = ax \in x\mathbb{Z}[\omega]$, und daher $I \subset x\mathbb{Z}[\omega]$.

Satz 1.9. Für jedes prime Element $n \in \mathbb{Z}[\omega]$ gilt, falls $n|n_1n_2$ mit $n_1, n_2 \in \mathbb{Z}[\omega]$ so folgt $n|n_1$ oder $n|n_2$.

Beweis. Sei $n \in \mathbb{Z}[\omega]$ ein primes Element und $n_1, n_2 \in \mathbb{Z}[\omega]$ sodass $n|n_1n_2$.

Betrachte das Ideal $J := n\mathbb{Z}[\omega] + n_1\mathbb{Z}[\omega]$.

Da $\mathbb{Z}[\omega]$ nach 1.8 ein Hauptidealring ist, gibt es ein $d \in \mathbb{Z}[\omega]$ sodass $J = d\mathbb{Z}[\omega]$. Da n prim ist gilt $n \neq 0$ und damit $d \neq 0$.

Somit folgt $J = d\mathbb{Z}[\omega] = n\mathbb{Z}[\omega] + n_1\mathbb{Z}[\omega]$. Daher gilt $n\mathbb{Z}[\omega] \subset d\mathbb{Z}[\omega]$, und mit 1.6 folgt d|n.

Da n prim ist hat n keinen echten Teiler, womit gilt $d \sim n$ oder $d \sim 1$.

1.Fall $d \sim n$

Dann gilt $n\mathbb{Z}[\omega] = d\mathbb{Z}[\omega] \supset n_1\mathbb{Z}[\omega]$. Mit 1.6 folgt $n|n_1$.

Dann gilt $\mathbb{Z}[\omega] = n\mathbb{Z}[\omega] + n_1\mathbb{Z}[\omega]$. Daher gibt es $x, y \in \mathbb{Z}[\omega]$ sodass $1 = nx + n_1y$. Daraus folgt $n_2 = n(n_2x) + (n_1n_2)y$, und wegen $n|n_1n_2$ folgt $n|n_2$.

Womit schließlich gilt $n|n_1$ oder $n|n_2$.

Satz 1.10. Jedes Element $x \in \mathbb{Z}[\omega] \setminus (\mathbb{Z}[\omega]^{\times} \cup \{0\})$ besitzt eine bis auf Assoziiertheit und Reihenfolge eindeutige Darstellung als Produkt endlich vieler Primelemente.

Beweis.

Existenz

Sei $x \in \mathbb{Z}[\omega] \setminus (\mathbb{Z}[\omega]^{\times} \cup \{0\})$. Mit 1.2 folgt $N(x) \geq 3$, und es gilt $N(1 - \omega) = 3$. Beweis durch Induktion nach N(x).

Sei die Behauptung für alle $x' \in \mathbb{Z}[\omega] \setminus (\mathbb{Z}[\omega]^{\times} \cup \{0\})$, mit N(x') < N(x) wahr.

Falls $x \in \mathbb{Z}[\omega]$ prim ist, so folgt die Behauptung. Sei nun $x \in \mathbb{Z}[\omega]$ nicht prim.

Dann existieren $x', x'' \in \mathbb{Z}[\omega] \setminus (\mathbb{Z}[\omega]^{\times} \cup \{0\})$ sodass x = x'x'' gilt. Es folgt N(x) = N(x'x'') = N(x')N(x''), und wegen $N(\mathbb{Z}[\omega]) \subset \mathbb{N}$ folgt 0 < N(x') < N(x) und 0 < N(x'') < N(x). Nach Vorraussetzung besitzen daher x' und x'' eine Darstellung von endlich vielen Primelementen, somit folgt die Behauptung.

Eindeutigkeit

Seien hierfür $p_1, ..., p_n, q_1, ..., q_m \in \mathbb{Z}[\omega]$ prime Elemente und $n, m \in \mathbb{N}$ sodass

$$x = \prod_{i=1}^{n} p_i = \prod_{j=1}^{m} q_j$$

gilt. Somit ist zu zeigen dass es eine bijektive Abbildung $\sigma: \{1,...,n\} \to \{1,...,m\}$ gibt sodass p_i assoziiert zu $q_{\sigma(i)}$ für alle $i \in \{1,...,n\}$ ist. Induktion über m:

"
$$m = 1$$
".

Sei $x=q_1:=q=p_1...p_n$. Da q prim ist gibt es ein p_i mit $i\in\{1,...,n\}$ sodass $q|p_i$, ohne Einschränkung sei i=1. Es folgt unmittelbar dass $p_1|q$. Somit gilt $q\sim p_1$. Damit existiert ein $\nu\in\mathbb{Z}[\omega]^{\times}$ sodass $q=p_1\nu$. Daher gilt $q=p_1\nu=p_1p_2...p_n$, womit $\nu=p_2...p_n\in\mathbb{Z}[\omega]^{\times}$ folgt. Da p_i prim ist für alle $i\in\{1,...,n\}$ folgt n=1. Und daher gilt $q=p_1$.

"m > 1".

Sei nun die Aussage wahr für alle $k \leq m-1$.

Dann gilt $p_1...p_n=q_1...q_m$. Da q_m prim ist gibt es ein $i\in\{1,...,n\}$ sodass $q_m|p_i$ gilt. Ohne Einschränkung sei i=n. Wegen q_m und p_n prim in $\mathbb{Z}[\omega]$ folgt $q_m\sim p_n$. Sei daher $\nu\in\mathbb{Z}[\omega]^\times$ sodass $\nu q_m=p_n$ gilt. Dann folgt $p_1...p_{n-1}\nu q_m=q_1...q_{m-1}p_m$, und damit gilt $p_1...p_{n-1}\nu=q_1...q_{m-1}$. Nach Induktionsvorraussetzung folgt n-1=m-1 und daher n=m. Da $q_m\sim p_n$ gilt folgt die Behauptung.

Prime Elemente in $\mathbb{Z}[\omega]$ $\mathbf{2}$

Definition 2.1. Sei $A \subset \mathbb{Z}[\omega]$.

- Ein Element $d \in \mathbb{Z}[\omega]$ heißt größter gemeinsamer Teiler von A falls
 - 1. d|a für alle $a \in A$.
 - 2. Für alle $\tilde{d} \in \mathbb{Z}[\omega] \setminus \{0\}$, mit $\tilde{d}|a$ für alle $a \in A$, gilt $\tilde{d}|d$. gelten.
- GGT(A) ist die Menge aller größten gemeinsamen Teiler von A.

Proposition 2.2. Sei $\emptyset \neq A \subset \mathbb{Z}[\omega]$ und $d \in \mathbb{Z}[\omega]$ dann gilt

1.

$$d \in GGT(A) \Longleftrightarrow \sum_{a \in A} \mathbb{Z}[\omega] a = \mathbb{Z}[\omega] d.$$

- 2. $GGT(A) \neq \emptyset$.
- 3. Für alle $d, \tilde{d} \in GGT(A)$ gilt $d \sim \tilde{d}$.
- 4. Für $d \in GGT(A)$ gilt $GGT(A) = d\mathbb{Z}[\omega]^{\times}$.
- 5. Es gilt $GGT(A) = \mathbb{Z}[\omega]^{\times} \iff 1 \in \sum_{a \in A} \mathbb{Z}[\omega]a$.
- 6. Seien $m \in \mathbb{N}$, $a \in A$ und $b_1, ..., b_m \in \mathbb{Z}[\omega]$. Falls für alle $k \in \{1, ..., m\}$ gilt $GGT(a, b_k) = \mathbb{Z}[\omega]^{\times}$, so folgt $GGT(a, \prod_{i=1}^{m} b_i) = \mathbb{Z}[\omega]^{\times}$.

Beweis.

1. "\(\infty\)" Sei $\sum_{a\in A} \mathbb{Z}[\omega]a = \mathbb{Z}[\omega]d$. Für alle $a\in A$ gilt dann $\mathbb{Z}[\omega]a\subset \mathbb{Z}[\omega]d$. Mit 1.6 folgt d|a für alle $a\in A$.

Sei nun $\tilde{d} \in \mathbb{Z}[\omega]$, sodass $\tilde{d}|a$ für jedes $a \in A$ gilt. Mit 1.6 folgt für jedes $a \in A$, dass $\mathbb{Z}[\omega]a \subset \mathbb{Z}[\omega]\tilde{d}$ ist. Damit gilt $\sum_{a \in A} \mathbb{Z}[\omega]a \subset \mathbb{Z}[\omega]\tilde{d}$. Somit gilt $\mathbb{Z}[\omega]d=\sum_{a\in A}\mathbb{Z}[\omega]a\subset\mathbb{Z}[\omega]\tilde{d},$ womit man mit 1.6 $\tilde{d}|d$ erhält.

"⇒" Sei $d \in GGT(A)$, dann gilt für alle $a \in A$ dass d|a. Daher folgt $\mathbb{Z}[\omega]a \subset \mathbb{Z}[\omega]d$. Damit gilt $\sum_{a \in A} \mathbb{Z}[\omega] a \subset \mathbb{Z}[\omega] d.$

Nach 1.8 ist $\mathbb{Z}[\omega]$ ist ein Hauptidealring. Daher gibt es ein $\tilde{d} \in \mathbb{Z}[\omega]$ sodass $\sum_{a \in A} \mathbb{Z}[\omega]a = \mathbb{Z}[\omega]\tilde{d}$.

Mit 1.6 folgt für alle $a \in A$ dass $\tilde{d}|a$. Wegen $d \in GGT(A)$ gilt $\tilde{d}|d$. Damit folgt $\mathbb{Z}[\omega]d \subset \mathbb{Z}[\omega]\tilde{d} = \sum_{a \in A} \mathbb{Z}[\omega]a \subset \mathbb{Z}[\omega]d$.

Womit folgt dass $\mathbb{Z}[\omega]d = \sum_{a \in A} \mathbb{Z}[\omega]a$.

2. Da $\mathbb{Z}[\omega]$ ein Hauptidealring ist gibt es ein $d \in \mathbb{Z}[\omega]$ sodass

$$\mathbb{Z}[\omega]d = \sum_{a \in A} \mathbb{Z}[\omega]a$$

und mit 1. folgt dass $d \in GGT(A)$.

3. Sein $d, \tilde{d} \in GGT(A)$. Dann gilt mit 1. dass

$$\mathbb{Z}[\omega]d = \sum_{a \in A} \mathbb{Z}[\omega]a = \mathbb{Z}[\omega]\tilde{d}.$$

Somit gilt $d|\tilde{d}$ und $\tilde{d}|d$. Dann folgt mit 1.6 dass $d \sim \tilde{d}$ ist.

- 4. Sei $d \in GGT(A)$. Dann gelten folgende Äquivalenzen: $d' \in GGT(A) \iff d'\mathbb{Z}[\omega] = \sum_{a \in A} \mathbb{Z}[\omega]a = d\mathbb{Z}[\omega] \iff d' \sim d.$ Daher gilt $GGT(A) = d\mathbb{Z}[\omega]^{\times}$.
- 5. "\(\infty\)" Sei $1 \in \sum_{a \in A} \mathbb{Z}[\omega]a$. Dann folgt, wegen $\sum_{a \in A} \mathbb{Z}[\omega]a = \mathbb{Z}[\omega]$, mit 1., dass $1 \in GGT(A)$ gilt. Nun folgt mit 4., dass $GGT(A) = \mathbb{Z}[\omega]^{\times}$ gilt.
 - "⇒" Sei $GGT(A) = \mathbb{Z}[\omega]^{\times}$. Dann folgt mit 4., dass $1 \in GGT(A)$ gilt. Und mit 1. folgt $1 \in GGT(A)$
- 6. Seien $m \in \mathbb{N}, a \in A$ und $b_1, ..., b_m \in \mathbb{Z}[\omega]$. Beweis durch Widerspruch. Angenommen es gilt für alle

 $k \in \{1,...,m\}$ dass $GGT(a,b_k) = \mathbb{Z}[\omega]^{\times}$ und $GGT(a,\prod_{i=1}^m b_i) \neq \mathbb{Z}[\omega]^{\times}$. Sei $d \in GGT(a,\prod_{i=1}^m b_i)$, dann gilt $d \neq 0$. (Denn sonst würde $a = \prod_{i=1}^m b_i = 0$ gelten. Daher gibt es ein $k \in \{1,...,m\}$ sodass $b_k = 0$ gilt, und somit würde $0 \in GGT(a,b_k) = \mathbb{Z}[\omega]^{\times}$ folgen, Widerspruch.) Somit gilt $d \notin \mathbb{Z}[\omega]^{\times} \cup \{0\}$, womit es ein Primelement $p \in \mathbb{Z}[\omega]$ gibt mit p|d. Somit folgt $p|\prod_{i=1}^{m} b_i$ und p|a. Da p prim ist, gibt es ein $k \in \{1,...,m\}$, sodass $p|b_k$ gilt. Deshalb existiert ein $d_0 \in \mathbb{R}$ $GGT(a, b_k) = \mathbb{Z}[\omega]^{\times}$ mit $p|d_0$. Womit $p \in \mathbb{Z}[\omega]^{\times}$ folgt, Widerspruch.

Bemerkung 2.3. Die Menge der Primelemente von \mathbb{Z} sei wie üblich mit \mathbb{P} bezeichnet.

Satz 2.4. Sei $x \in \mathbb{Z}[\omega]$ ein primes Element, dann existiert genau ein $p \in \mathbb{P}$, sodass x|p gilt. Für dieses p gilt:

- 1. N(x) = p und x ist nicht assoziiert zu p,
- 2. $N(x) = p^2$ und x ist assoziiert zu p.

Beweis. Sei $x \in \mathbb{Z}[\omega]$ prim, sodass $N(x) = n \in \mathbb{N}$ gilt.

Existenz: Falls $n := p \in \mathbb{P}$ gilt, so folgt $x\overline{x} = N(x) = p$. Daher gilt x|p.

Sei nun $n \notin \mathbb{P}$. Dann existieren $p_1, ..., p_n \in \mathbb{P}$ und $r_1, ..., r_n \in \mathbb{N}$ sodass $n = \prod_{i=1}^n p_i^{r_i}$ gilt.

Daraus folgt $N(x) = x\overline{x} = n = \prod_{i=1}^{n} p_i^{r_i}$. Daher gilt $x \mid \prod_{i=1}^{n} p_i^{r_i}$ in $\mathbb{Z}[\omega]$. Da x prim in $\mathbb{Z}[\omega]$ ist, existient ein $i \in \{1, ..., n\}$ sodass $x | p_i := p \in \mathbb{P}$.

Eindeutigkeit: Angenommen es existieren $p,q \in \mathbb{P}$ sodass x|p und x|q gilt. Dann folgt $N(x)|p^2$ und $N(x)|q^2$. Da x prim in $\mathbb{Z}[\omega]$ ist gilt $N(x) \neq 1$.

Wegen $p, q \in \mathbb{P}$ gilt N(x) = p und N(x) = q, oder $N(x) = p^2$ und $N(x) = q^2$.

Aus der Eindeutigkeit der Primelemente von \mathbb{Z} folgt nun p=q.

Sei nun $p \in \mathbb{P}$ sodass $x \mid p$ gilt. Daher gilt $x\overline{x} = N(x) \mid p^2$, womit wegen $p \in \mathbb{P}$ gilt: N(x) = p oder $N(x) = p^2$. Falls nun N(x)=p und angenommen $x\sim p$ gilt. Dann existiert ein $\nu\in\mathbb{Z}[\omega]^{\times}$ sodass $p\nu=x$ gilt. Somit folgt $p=N(x)=N(p\nu)=N(p)N(\nu)=N(p)=p^2$, was im Widerspruch zu $p\in\mathbb{P}$ steht. Daraus folgt

Sei nun $N(x)=p^2$. Dann gilt x|p. Sei daher $\gamma\in\mathbb{Z}[\omega]$ sodass $x\gamma=p$ gilt. Dann folgt $N(x)N(\gamma)=p^2$ $N(x\gamma) = N(p) = p^2$. Wegen $N(x) \in \mathbb{N}$ und $N(x) \notin \mathbb{P}$ gilt $N(x) = p^2$ und $N(\gamma) = 1$. Also folgt mit 1.2 $\gamma \in \mathbb{Z}[\omega]^{\times}$. Daher gilt: $x \sim p$.

Satz 2.5. Ist $x \in \mathbb{Z}[\omega]$ sodass $N(x) = p \in \mathbb{P}$ gilt, dann ist x ein primes Element von $\mathbb{Z}[\omega]$.

Beweis. Angenommen x ist nicht prim in $\mathbb{Z}[\omega]$ und $N(x) = p \in \mathbb{P}$. Da x nicht prim in $\mathbb{Z}[\omega]$ und $N(x) \neq 0$ ist, existieren $\rho, \gamma \in \mathbb{Z}[\omega] \setminus (\mathbb{Z}[\omega]^{\times} \cup \{0\})$, sodass $x = \rho \gamma$ gilt. Aus $\rho, \gamma \notin \mathbb{Z}[\omega]^{\times} \cup \{0\}$ folgt mit 1.2 dass $N(\rho) > 1$ und $N(\gamma) > 1$ gilt.

Daraus folgt $p = N(x) = N(\rho)N(\gamma)$ womit p keine Primelement von \mathbb{Z} sein kann. Widerspruch. Damit gilt x ist prim in $\mathbb{Z}[\omega]$.

Definition 2.6. Sei $p \in \mathbb{P}$, dann heißt

- p träge in $\mathbb{Z}[\omega] \iff p$ ist ein Primelement von $\mathbb{Z}[\omega]$.
- p unverzweigt in $\mathbb{Z}[\omega] \iff p = x\overline{x}$ wobei x prim in $\mathbb{Z}[\omega]$ und $x \nsim \overline{x}$ gilt.
- p verzweigt in $\mathbb{Z}[\omega] \iff p = x\overline{x}$ wobei x prim in $\mathbb{Z}[\omega]$ und $x \sim \overline{x}$ gilt.

Definition 2.7. Seien die Teilmengen $\mathfrak{A}, \mathfrak{B}, \mathfrak{C} \subset \mathbb{P}$ wie folgt definiert:

- $\mathfrak{A} := \{ p \in \mathbb{P} \mid p \text{ ist träge in } \mathbb{Z}[\omega] \}$
- $\mathfrak{B} := \{ p \in \mathbb{P} \mid p \text{ ist unverzweigt in } \mathbb{Z}[\omega] \}$
- $\mathfrak{C} := \{ p \in \mathbb{P} \mid p \text{ ist verzweigt in } \mathbb{Z}[\omega] \}$

Proposition 2.8. Für jedes $p \in \mathbb{P}$ gibt es genau eine der folgenden drei Möglichkeiten der Primzerlegung in $\mathbb{Z}[\omega]$.

- 1. p ist träge in $\mathbb{Z}[\omega]$.
- 2. p ist unverzweigt in $\mathbb{Z}[\omega]$.
- 3. p ist verzweigt in $\mathbb{Z}[\omega]$.

Beweis. Sei $p \in \mathbb{P}$, dann folgt $N(p) = p^2 > 1$. Mit 1.2 folgt $p \notin \mathbb{Z}[\omega]^{\times} \cup \{0\}$. Nach 1.10 gibt es eine Darstellung der Form $p = \prod_{i=1}^{n} x_i$ mit $x_1, ..., x_n \in \mathbb{Z}[\omega]$ prim. Daher existiert ein Primelement $x \in \mathbb{Z}[\omega]$ sodass x|p gilt. Mit 2.4 folgt $x \sim p$ oder $N(x) = \overline{x}x = p$.

Falls $x \sim p$ gilt, so ist p prim in $\mathbb{Z}[\omega]$. Daher ist p träge in $\mathbb{Z}[\omega]$, was 1 entspricht.

Falls $x\overline{x} = p$ gilt so trifft entweder 2 oder 3 zu.

Die Eindeutigkeit folgt unmittelbar aus der Eindeutigkeit der Primfaktorzerlegung (also nach 1.10). \Box

Definition 2.9. Von nun an sei für $p \in \mathbb{P}$ stets $\pi_p \in \mathbb{Z}[\omega]$ ein Primelement, sodass gilt

- ist $p \in \mathfrak{A}$, so folgt $p = \pi_p$.
- ist $p \in \mathfrak{B} \cup \mathfrak{C}$, so folgt $p = \overline{\pi}_p \pi_p$.

Proposition 2.10. Für $\pi_p \in \mathbb{Z}[\omega]$ gilt:

- $ist \ p \in \mathfrak{A} \Longrightarrow N(\pi_p) = p^2$.
- Ist $p \in \mathfrak{B} \cup \mathfrak{C} \Longrightarrow N(\pi_p) = p$.

Beweis. Sei $p \in \mathfrak{A}$. Dann folgt $p = \pi_p$, womit $p \sim \pi_p$ gilt. Daher folgt mit 2.4 dass $N(\pi_p) = p^2$ gilt. Sei nun $p \in \mathfrak{B} \cup \mathfrak{C}$. Dann folgt $p \nsim \pi_p$ und $\pi_p|p$, womit mit 2.4 folgt: $N(\pi_p) = p$.

Definition 2.11. Seien

- $\mathcal{A} := \{ \pi_p \in \mathbb{Z}[\omega] | p \in \mathfrak{A} \}$
- $\mathcal{B} := \{\pi_p, \overline{\pi_p} \in \mathbb{Z}[\omega] | p \in \mathfrak{B} \}$
- $\mathcal{C} := \{ \pi_p \in \mathbb{Z}[\omega] | p \in \mathfrak{C} \}$
- $\mathcal{P} := \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$

Bemerkung 2.12. Nach 2.4 und 2.8 folgt unmittelbar dass $\mathcal{A} \cap \mathcal{B} = \emptyset$, $\mathcal{B} \cap \mathcal{C} = \emptyset$, und $\mathcal{A} \cap \mathcal{C} = \emptyset$ gilt. Daher ist \mathcal{P} die disjunkte Vereinigung von \mathcal{A}, \mathcal{B} und \mathcal{C} .

Satz 2.13. Die Menge \mathcal{P} ist bezüglich der Assoziiertheit ein Repräsentantensystem der primen Elemente von $\mathbb{Z}[\omega]$. (d.h.: Für jedes Primelement $x \in \mathbb{Z}[\omega]$ gibt es ein $\pi \in \mathcal{P}$ mit $x \sim \pi$. Und falls für $\pi_1, \pi_2 \in \mathcal{P}$ gilt $\pi_1 \sim \pi_2$, so folgt $\pi_1 = \pi_2$.)

Beweis. Sei $x \in \mathbb{Z}[\omega]$ ein Primelement. Nach 2.4 existiert ein $p \in \mathbb{P}$ sodass $p \sim x$ ist oder p = N(x) gilt. Falls $p \sim x$ gilt, folgt dass $p \in \mathcal{A}$ ein Repräsentant von x ist.

Falls p = N(x) ist, folgt dass p kein Primelement in $\mathbb{Z}[\omega]$ ist. Daher gilt $p \in \mathfrak{B}$ oder $p \in \mathfrak{C}$.

Womit entweder $\pi_p \in \mathcal{B}$, oder $\pi_p \in \mathcal{C}$ gilt.

Für beide Fälle gilt $x\overline{x} = p = \pi_p \overline{\pi_p}$. Nach 1.10 folgt, falls $\pi_p \in \mathcal{B}$ gilt $x \sim \pi_p$ oder $x \sim \overline{\pi}_p$. Falls $\pi_p \in \mathcal{C}$ ist, folgt $x \sim \pi_p$.

Seien nun $\pi, \pi' \in \mathcal{P}$ sodass $\pi \sim \pi'$ gilt. Dann gibt es $p, q \in \mathbb{P}$, sodass $\pi | p$ und $\pi' | q$ gilt. Wegen $\pi \sim \pi'$ folgt $\pi | q$. Mit 2.4 folgt p = q.

- **1.Fall** Falls $p \in \mathfrak{A}$ ist, so folgt $\pi = \pi_p$ und $\pi' = \pi_p$. Daher gilt $\pi = \pi'$.
- **2.Fall** Falls $p \in \mathfrak{B}$ ist, so folgt $\pi, \pi' \in \{\pi_p, \overline{\pi}_p\}$. Wegen $\pi \sim \pi'$ und $\pi_p \nsim \overline{\pi}_p$ folgt $\pi = \pi'$.
- **3.Fall** Falls $\pi_p \in \mathfrak{C}$ ist, so folgt $\pi, \pi' \in \{\pi_p\}$. Daher folgt unmittelbar $\pi = \pi'$.

Satz 2.14. Sei $p \in \mathbb{P}$, dann gilt $p \in \mathfrak{B} \cup \mathfrak{C}$ genau dann, wenn es $a, b \in \mathbb{Z}$ gibt, sodass $p = a^2 - ab + b^2$ gilt.

Beweis.

"\(\Rightarrow\)" Nach 2.8 ist $p = N(\pi_p)$. Sei $\pi_p = a + b\omega$ mit $a, b \in \mathbb{Z}$, dann folgt $p = \pi_p \overline{\pi}_p = a^2 - ab + b^2$.

"\(= \begin{aligned} \text{Seien nun} \ a,b \in \mathbb{Z} \text{ sodass} \ p = a^2 - ab + b^2 \text{ gilt. Setzte} \ x = a + b\omega \in \mathbb{Z}[\omega], \text{ dann folgt} \ p = x\overline{x} = N(x). \text{ Mit 2.5 folgt, dass} \ x \text{ prim in } \mathbb{Z}[\omega] \text{ ist. Somit ist} \ p \in \mathbb{B} \cut \mathbb{C}. \text{ } \text{ folgt, dass} \ x \text{ prim in } \mathbb{Z}[\omega] \text{ ist. Somit ist} \ p \in \mathbb{B} \cut \mathbb{C}. \text{ } \text{ } \text{ } \text{ folgt, dass} \ x \text{ prim in } \mathbb{Z}[\omega] \text{ ist. Somit ist} \ p \in \mathbb{B} \cut \mathbb{C}. \text{ } \text{ }

Satz 2.15. Sei $p \in \mathbb{P}$, dann gelten:

1. $p \in \mathfrak{A} \iff p \equiv 2 \mod 3$

2.
$$p \in \mathfrak{B} \iff p \equiv 1 \mod 3$$

3.
$$p \in \mathfrak{C} \iff p = 3$$

Beweis.

3. "\(\Rightarrow\)" Sei $p \in \mathfrak{C}$, dann gilt $p = N(\pi_p) = \pi_p \overline{\pi_p}$ und $\pi_p \sim \overline{\pi_p}$. Daher folgt $\pi_p | \overline{\pi_p}$ und somit $\pi_p | \pi_p - \overline{\pi_p}$. Seien $a, b \in \mathbb{Z}$ sodass $\pi_p = a + b\omega$ gilt. Dann folgt $\pi_p | \pi_p - \overline{\pi_p} = a + b\omega - (a - b - b\omega) = b + 2b\omega = b(1 + 2\omega)$, womit $\pi_p | b(1 + 2\omega)$ gilt.

Sei daher $y \in \mathbb{Z}[\omega]$ sodass $\pi_p y = b(1 + 2\omega)$ gilt. Dann gilt:

$$pN(y) = \pi_p \overline{\pi}_p N(y) = N(\pi_p) N(y) = N(\pi_p y) = N(b(1+2\omega)) = N(b) N(1+2\omega)$$

$$= b^{2}((1+2\omega)(1-2-2\omega)) = b^{2}(1-2-4\omega-4\omega^{2}) = b^{2}(-1-4(\omega^{2}+\omega)) = b^{2}(-1+4) = 3b^{2}$$

Damit erhält man $p|3b^2$, womit wegen $p \in \mathbb{P}$ folgt p|b oder p|3.

Angenommen p|b. Dann folgt $p = \pi_p \overline{\pi}_p = a^2 - ab + b^2$, womit $p|p - b(a - b) = a^2$ gilt. Daher gilt p|a. Seien daher $c, d \in \mathbb{Z}$ sodass pc = a und pd = b gilt. Dann folgt $p = a^2 - ab + b^2 = p^2c^2 - p^2cd + bp^2d^2 = p^2(c^2 - cd + d^2)$.

Damit folgt $1 = p(c^2 - cd + d^2)$ und daher p|1 in \mathbb{Z} . Das kann jedoch wegen $p \in \mathbb{P}$ nicht gelten. Daher gilt p|3 in \mathbb{Z} , und somit p=3.

- "\(\infty \) Sei p = 3, für $x \in \mathbb{Z}[\omega]$ mit $x = 1 \omega$ gilt $N(x) = (1 \omega)(2 + \omega) = 3$. Womit nach 2.5 gilt x ist prim in $\mathbb{Z}[\omega]$. Es bleibt zu zeigen $x \sim \overline{x}$. Wegen $-\omega^2 \in \mathbb{Z}[\omega]^{\times}$ und $(1 \omega)(-\omega^2) = (1 \omega)(1 + \omega) = 1 \omega^2 = 2 + \omega$ folgt $x \sim \overline{x}$.
- 1. "\infty" Sei $p \in \mathbb{P}$ sodass $p \equiv 2 \mod 3$ gilt. Zu zeigen ist $p \in \mathfrak{A}$. Es genügt zu zeigen dass $p \not\in \mathfrak{B} \cup \mathfrak{C}$

Angenommen $p \equiv 2 \mod 3$ und $p \in \mathfrak{B} \cup \mathfrak{C}$. Dann gibt es $a, b \in \mathbb{Z}$ sodass $p = N(\pi_p) = a^2 - ab + b^2$ gilt. Womit $4p = (2a - b)^2 + 3b^2$ gilt.

Sei $\pi: \mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$ der kanonische Homomorphismus. Dann gilt $\pi(p) = \pi(4p) = \pi((2a-b)^2 + 3b^2) = \pi(2a-b)^2 + \pi(3b^2) = \pi(2a-b)^2$. Daher gibt es ein $x \in \mathbb{Z}$ sodass $\pi(p) = \pi(x^2)$ gilt, womit $x^2 \equiv 2 \mod (3)$ gilt. Da jedoch in $0^2 \equiv 0 \mod (3)$, $1^2 \equiv 1 \mod (3)$ und $2^2 \equiv 1 \mod (3)$ gilt, kann ein solches x nicht existieren, Widerspruch.

Somit gilt $p \notin \mathfrak{B} \cup \mathfrak{C}$.

2. " \Leftarrow " Sei $p \in \mathbb{P}$ sodass $p \equiv 1 \mod 3$ gilt. Es folgt unmittelbar dass $p \neq 2$ und $p \neq 3$ gilt. Mit dem Quadratischen Reziprozitätsgesetz folgt

$$\left(\frac{p}{3}\right)\left(\frac{3}{p}\right) = (-1)^{\frac{(p-1)}{2}}.$$

Damit folgt

$$\left(\frac{-3}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{3}{p}\right) = (-1)^{\frac{(p-1)}{2}}(-1)^{\frac{(p-1)}{2}}\left(\frac{p}{3}\right) = \left(\frac{1}{3}\right) = 1.$$

Daher gibt es ein $u \in \mathbb{Z}$ sodass $u^2 \equiv -3 \mod p$ gilt, womit $\sqrt{-3} \in \mathbb{Z}/p\mathbb{Z}$ folgt. Da $p \neq 2$ ist, folgt $2 \in \mathbb{Z}/p\mathbb{Z} \setminus \{0\} = (\mathbb{Z}/p\mathbb{Z})^{\times}$. Daher ist $v := \frac{1-\sqrt{-3}}{2} \in \mathbb{Z}/p\mathbb{Z}$, und v ist eine Nullstelle von $P(x) = x^2 - x + 1$ in $\mathbb{Z}/p\mathbb{Z}$. Sei $\pi : \mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$ der kanonische Homomorphismus, und sei $u \in \mathbb{Z}$, sodass $v = \pi(u)$ gilt. Dann gilt $p|u^2 - u + 1$. Sei $x = u + \omega$, dann gilt $N(x) = x\overline{x} = (u + \omega)(u - 1 - \omega) = u^2 - u - \omega - \omega^2 = u^2 - u + 1$, also $p|x\overline{x}$. Wegen $p \neq 3$ folgt mit 3. $p \notin \mathfrak{C}$, daher ist zu zeigen: p ist nicht prim in $\mathbb{Z}[\omega]$.

Angenommen p ist prim in $\mathbb{Z}[\omega]$. Dann gilt p|x, oder $p|\overline{x}$.

"p|x" Dann existieren $a, b \in \mathbb{Z}$ sodass $p(a + b\omega) = u + \omega$ und daher $pa + pb\omega = u + \omega$ womit pb = 1 folgt, was wegen $p \in \mathbb{P}$ nicht sein kann.

" $p|\overline{x}$ " Dann existieren $a,b\in\mathbb{Z}$ sodass $p(a+b\omega)=pa+pb\omega=u-1-\omega$ womit pb=-1 gilt, was wiederum wegen $p\in\mathbb{P}$ nicht sein kann.

Somit ist p nicht prim in $\mathbb{Z}[\omega]$, und daher gilt $p \in \mathfrak{B}$.

Die Implikationen " \Rightarrow " für 1 und 2 folgen nun unmittelbar mit 2.12.

Bemerkung 2.16. Aus dem letzten Satz folgt $\mathfrak{C} = \{3\}$ und $\mathcal{C} = \{1 - \omega\}$.

3 Mächtigkeit von $\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$

Definition 3.1. Sei

$$\rho: \left\{ \begin{array}{c} \mathbb{Z}[\omega] \setminus \{0\} \to \mathbb{N}^+ \cup \infty \\ x \mapsto |\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x| \end{array} \right.$$

Lemma 3.2. Seien $x, y \in \mathbb{Z}[\omega] \setminus \{0\}$, dann gilt $\rho(xy) = \rho(x)\rho(y)$.

Beweis. Seien $x, y \in \mathbb{Z}[\omega]$ und

- $\pi_x : \mathbb{Z}[\omega] \longrightarrow \mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$
- $\pi_u : \mathbb{Z}[\omega] \longrightarrow \mathbb{Z}[\omega]/\mathbb{Z}[\omega]y$
- $\pi_{xy}: \mathbb{Z}[\omega] \longrightarrow \mathbb{Z}[\omega]/\mathbb{Z}[\omega]xy$

die kanonischen Homomorphismen. Es ist $\mathbb{Z}[\omega]xy$ ein Ideal in $\mathbb{Z}[\omega]$ und $\mathbb{Z}[\omega]xy \subset \mathbb{Z}[\omega]x = \ker(\pi_x)$. Aus der *universellen Eigenschaft des Restklassenhomomorphisums* folgt, dass es einen Ringhomomorphismus $f: \mathbb{Z}[\omega]/\mathbb{Z}[\omega]xy \longrightarrow \mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$ gibt, sodass $f \circ \pi_{xy} = \pi_x$ gilt.

Wegen der Surjektivität von π_x folgt dass f surjektiv ist, und es gilt $\ker(f) = \pi_{xy}(\ker(\pi_x)) = \pi_{xy}(\mathbb{Z}[\omega]x)$. Sei

$$\tilde{g}: \left\{ \begin{array}{c} \mathbb{Z}[\omega] \to \pi_{xy}(\mathbb{Z}[\omega]x) \\ a \mapsto \pi_{xy}(ax) \end{array} \right.$$

ein Ringhomomorphismus. Es gelten folgende Äquivalenzen:

$$a \in \ker(\tilde{g}) \iff \pi_{xy}(ax) = 0 \iff xy|ax \iff y|a \iff a \in \mathbb{Z}[\omega]y.$$

Daher gilt $\ker(\tilde{g}) = \mathbb{Z}[\omega]y$. Somit folgt aus der universellen Eigenschaft des

Restklassenhomomorphisums dass es einen Ringhomomorphismus $g: \mathbb{Z}[\omega]/\mathbb{Z}[\omega]y \to \pi_{xy}(\mathbb{Z}[\omega]x)$ gibt, sodass $g \circ \pi_y = \tilde{g}$ gilt. Wegen der Surjektivität von \tilde{g} folgt dass g surjektiv ist.

Seien nun $u_1, u_2 \in \mathbb{Z}[\omega]/\mathbb{Z}[\omega]y$ und $a_1, a_2 \in \mathbb{Z}[\omega]$ sodass $u_i = \pi_y(a_i)$, für $i \in \{1, 2\}$, gilt. Gilt nun $g(u_1) = g(u_2)$ so folgt $0 = g(u_1 - u_2) = g(\pi_y(a_1 - a_2)) = \pi_{xy}((a_1 - a_2)x)$. Daher ist $(a_1 - a_2)x \in \ker(\pi_{xy}) = \mathbb{Z}[\omega]xy$. Da $x \neq 0$ kein Nullteiler ist, gilt $a_1 - a_2 \in \mathbb{Z}[\omega]y = \ker(\pi_y)$. Somit folgt $\pi_y(a_1 - a_2) = 0$ und daher $u_1 = \pi_y(a_1) = \pi_y(a_2) = u_2$.

Daher ist g ein Gruppenisomorphismus, womit $\mathbb{Z}[\omega]/\mathbb{Z}[\omega]y \cong \pi_{xy}(\mathbb{Z}[\omega]x) = \ker(f)$ gilt. Insbesondere folgt $|\ker(f)| = |\mathbb{Z}[\omega]/\mathbb{Z}[\omega]y| = \rho(y)$.

Aus dem Homomorphiesatz der Gruppentheorie folgt $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]xy)/\ker(f) \cong f(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]xy) = \mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$. Womit $|(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]xy)/\ker(f)| = |\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x| = \rho(x)$ folgt. Da der $\ker(f)$ eine Untergruppe von $\mathbb{Z}[\omega]/\mathbb{Z}[\omega]xy$ ist, folgt mit dem Satz von Lagrange:

$$\rho(xy) = |\mathbb{Z}[\omega]/\mathbb{Z}[\omega]xy| = |(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]xy)/\ker(f)| \cdot |\ker(f)| = \rho(x) \cdot \rho(y).$$

Lemma 3.3. Sei $n \in \mathbb{N}^+$, dann gilt $\rho(n) = n^2$.

Beweis. Sei $n \in \mathbb{N}^+$ und $S := \{a + b\omega \in \mathbb{Z}[\omega] | 0 \le a, b < n\}$. Sei $\pi : \mathbb{Z}[\omega] \longrightarrow \mathbb{Z}[\omega]/\mathbb{Z}[\omega]n$ der kanonische Homomorphismus und $\pi_S : S \longrightarrow \mathbb{Z}[\omega]/\mathbb{Z}[\omega]n$ dessen Einschränkung auf S. Dann ist π_S bijektiv.

surjektiv: Sei $z \in \mathbb{Z}[\omega]/\mathbb{Z}[\omega]n$, $y \in \mathbb{Z}[\omega]$ und $a, b \in \mathbb{Z}$ mit $y = a + b\omega$, sodass $z = \pi(y)$ gilt. Mittels Divison mit Rest gibt es $q, r, s, t \in \mathbb{Z}$ mit $0 \le r, t < n$ sodass a = nq + r und b = ns + t gilt. Dann folgt $z = \pi(y) = \pi(a + b\omega) = \pi(nq + r + ns\omega + t\omega) = \pi(n(q + s\omega) + r + t\omega) = \pi(n)(\pi(q + s\omega)) + \pi(r + t\omega) = \pi(r + t\omega) = \pi_S(r + t\omega)$. Somit ist π_S surjektiv.

injektiv: Seien $y_1, y_2 \in S$ mit $\pi_S(y_1) = \pi_S(y_2)$. Seien $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ sodass $y_i = a_i + b_i \omega$ und $0 \le a_i, b_i < n$, für $i \in \{1, 2\}$ gilt. Dann gilt $\pi_S(a_1 + b_1 \omega) = \pi_S(a_2 + b_2 \omega)$, womit $\pi(a_1 - a_2 + (b_1 - b_2)\omega) = 0$ folgt. Daher existiert ein $q \in \mathbb{Z}[\omega]$ sodass $a_1 - a_2 + (b_1 - b_2)\omega = qn$ gilt. Seien $u, v \in \mathbb{Z}$ sodass $q = u + v\omega$. Dann folgt $a_1 - a_2 - nu + (b_1 - b_2 - nv)\omega = 0$. Daher folgt $nu = a_1 - a_2$ und $nv = b_1 - b_2$. Somit gilt $n|a_1 - a_2$ in \mathbb{Z} , und $n|b_1 - b_2$ in \mathbb{Z} . Wegen $-n + 1 \le a_1 - a_2 \le n - 1$ und $-n + 1 \le b_1 - b_2 \le n - 1$ folgt $a_1 = a_2$ und $b_1 = b_2$. Daher folt $y_1 = y_2$.

Da π_S ein Bijektion zwischen S und $\mathbb{Z}[\omega]/\mathbb{Z}[\omega]n$ ist folgt $\rho(n) = |\mathbb{Z}[\omega]/\mathbb{Z}[\omega]n| = |S| = n^2$.

Satz 3.4. Sei $x \in \mathbb{Z}[\omega] \setminus \{0\}$, dann ist $\rho(x) = N(x)$.

Beweis. Sei $x \in \mathbb{Z}[\omega] \setminus \{0\}$. Nach 1.3 ist $\bar{\cdot} : \mathbb{Z}[\omega] \longrightarrow \mathbb{Z}[\omega]$ ein Ringisomorphismus. $\mathbb{Z}[\omega]x$ ist ein Ideal von $\mathbb{Z}[\omega]$ mit $\overline{\mathbb{Z}[\omega]x} = \mathbb{Z}[\omega]\overline{x}$. Nach dem Isomorphieprinzip induziert $\bar{\cdot}$ einen Ringisomorphismus $\kappa : \mathbb{Z}[\omega]/\mathbb{Z}[\omega]x \to \overline{\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x} = \mathbb{Z}[\omega]/\mathbb{Z}[\omega]\overline{x}$. Somit gilt $\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x \cong \mathbb{Z}[\omega]/\mathbb{Z}[\omega]\overline{x}$. Somit gilt $\rho(x) = \rho(\overline{x})$. Mit 3.3 erhalten wir $N(x)^2 = \rho(N(x)) = \rho(x\overline{x}) = \rho(x)\rho(\overline{x}) = \rho(x)^2$. Daher gilt $N(x) = \rho(x)$.

Satz 3.5. Seien $x \in \mathbb{Z}[\omega] \setminus \{0\}, \pi : \mathbb{Z}[\omega] \longrightarrow \mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$ der kanonische Homomorphismus, $y \in \mathbb{Z}[\omega]$ und $n(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)$ die Menge aller Nullteiler von $\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$. Dann gelten:

- 1. $\pi(y) \in n(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x) \iff GGT(x,y) \cap \mathbb{Z}[\omega]^{\times} = \emptyset$
- 2. $\pi(y) \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)^{\times} \iff GGT(x,y) = \mathbb{Z}[\omega]^{\times}$
- 3. $\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$ ist ein Körper $\iff \mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$ ist ein Bereich $\iff x$ ist ein Primelement. Beweis.
 - 1. "⇒" Sei $\pi(y) \in n(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)$. Dann gibt es ein $w \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x) \setminus \{0\}$ sodass $\pi(y)w = 0$ ist. Sei $u \in \mathbb{Z}[\omega]$ mit $w = \pi(u)$. Wegen $w \neq 0$ folgt $u \notin \ker(\pi) = \mathbb{Z}[\omega]x$, womit $x \nmid u$ gilt. Jedoch ist $0 = \pi(y)\pi(u) = \pi(yu)$ womit $x \mid yu$ folgt.

Angenommen $GGT(x,y) \cap \mathbb{Z}[\omega]^{\times} \neq \emptyset$. Dann existiert ein $d \in GGT(x,y) \cap \mathbb{Z}[\omega]^{\times}$, ohne Einschränkung sei d=1. Dann gibt es $a,b \in \mathbb{Z}[\omega]$ mit 1=ax+by. Wegen x|yu existiert ein $z \in \mathbb{Z}[\omega]$ sodass yu=zx. Somit folgt nun dass u=axu+byu=aux+bzx. Daher folgt x|u, was jedoch nicht sein kann.

Somit folgt $GGT(x, y) \cap \mathbb{Z}[\omega]^{\times} = \emptyset$.

- "\(\infty\)" Sei $GGT(x,y) \cap \mathbb{Z}[\omega]^{\times} = \emptyset$ und $d \in GGT(x,y)$. Dann gilt $d \notin \mathbb{Z}[\omega]^{\times}$ und daher folgt $x \nmid \frac{x}{d}$. (Denn falls $x \mid \frac{x}{d} \Rightarrow xd \mid x \Rightarrow d \mid 1 \Rightarrow d \in \mathbb{Z}[\omega]^{\times}$, was nicht sein kann.) Somit ist also $\frac{x}{d} \notin \ker(\pi)$ und daher $\pi(\frac{x}{d}) \neq 0$. Damit folgt nun $\pi(y)\pi(\frac{x}{d}) = \pi(\frac{yx}{d}) = \pi(\frac{y}{d})\pi(x) = 0$ und daher $\pi(y) \in n(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)$.
- 2. " \Rightarrow " Sei $\pi(y) \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)^{\times}$. Dann gibt es ein $w \in \mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$ und $u \in \mathbb{Z}[\omega]$ sodass $\pi(y)w = 1$ und $w = \pi(u)$ gilt. Weiters gilt $\pi(1) = 1 = \pi(y)\pi(u) = \pi(yu)$ und damit $\pi(yu 1) = 0$. Damit folgt x|yu 1.

Daher existiert ein $z' \in \mathbb{Z}[\omega]$ mit uy - 1 = xz' und ein $z \in \mathbb{Z}[\omega]$ mit zx + uy = 1. Somit ist $1 \in \mathbb{Z}[\omega]x + \mathbb{Z}[\omega]y$ und daher gilt $GGT(x,y) = \mathbb{Z}[\omega]^{\times}$.

- "\(\infty\)" Sei $GGT(x,y) = \mathbb{Z}[\omega]^{\times}$, dann gilt 1 = ux + vy mit geeigneten $u,v \in \mathbb{Z}[\omega]$. Dann folgt $1 = \pi(1) = \pi(ux + vy) = \pi(u)\pi(x) + \pi(v)\pi(y) = 0 + \pi(v)\pi(y) = \pi(v)\pi(y)$. Daher ist $\pi(y) \in \mathbb{Z}[\omega]^{\times}$.
- 3. $\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$ ist ein Körper $\Longrightarrow \mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$ ist ein Bereich. Ist eine unmittelbare Konsequenz der Definition.
 - $\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$ ist ein Bereich $\Longrightarrow x$ ist ein Primelement. Sei also $\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$ ein Bereich und $y \in \mathbb{Z}[\omega]$ ein Teiler von x. Dann gibt es ein $z \in \mathbb{Z}[\omega]$ mit x = yz. Somit gilt $0 = \pi(x) = \pi(yz) = \pi(y)\pi(z)$. Daher folgt $\pi(y) = 0$ oder $\pi(z) = 0$. Falls $\pi(y) = 0$, so gilt $y \in \mathbb{Z}[\omega]x$ und damit x|y. Wegen y|x, ist x assoziiert zu y. Falls $\pi(z) = 0$, so folgt analog dass x assoziiert zu z ist.
 - Womit y eine Einheit ist. Somit besitzt x keine echten Teiler, somit ist x prim in $\mathbb{Z}[\omega]$.

 x ist ein Primelement $\Longrightarrow \mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$ ist ein Körper.

Sei nun x ein Primelement in $\mathbb{Z}[\omega]$. Dann gilt $x \notin \mathbb{Z}[\omega]^{\times} \cup \{0\}$ und daher $|\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x| = N(x) \geq 2$.

Somit ist $\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$ nicht der Nullring. Seien $u \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x) \setminus \{0\}$ und $y \in \mathbb{Z}[\omega]$ mit $u = \pi(y)$. Wegen $u \neq 0$ folgt $y \notin \ker(\pi) = \mathbb{Z}[\omega]x$, womit $x \nmid y$ gilt. Sei $d \in GGT(x,y)$. Da x prim ist folgt $x \sim d$ oder $d \in \mathbb{Z}[\omega]^{\times}$. Falls $x \sim d$ gilt so folgt $x \mid d$. Wegen $d \mid y$ folgt $x \mid y$, ein Widerspruch. Somit muss $d \in \mathbb{Z}[\omega]^{\times}$ und damit $GGT(x,y) = \mathbb{Z}[\omega]^{\times}$ gelten.

Daher folgt $u = \pi(y) \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)^{\times}$. Somit ist jedes Element von $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x) \setminus \{0\}$ invertierbar, und daher ist $\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$ ein Körper.

Definition 3.6. Sei $x \in \mathbb{Z}[\omega] \setminus \{0\}$ dann ist $\phi_{\mathbb{Z}[\omega]}(x) := |(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)^{\times}|$.

Satz 3.7. Seien $x, y \in \mathbb{Z}[\omega]$. Dann gilt, falls $GGT(x, y) = \mathbb{Z}[\omega]^{\times}$ ist, so folgt $\phi_{\mathbb{Z}[\omega]}(x \cdot y) = \phi_{\mathbb{Z}[\omega]}(x) \cdot \phi_{\mathbb{Z}[\omega]}(y)$.

Beweis. Seien $x, y \in \mathbb{Z}[\omega]$ und $d \in GGT(x, y) = \mathbb{Z}[\omega]^{\times}$.

Mit $\mathbb{Z}[\omega]x + \mathbb{Z}[\omega]y = \mathbb{Z}[\omega]d = \mathbb{Z}[\omega]$ folgt, dass die Ideale $\mathbb{Z}[\omega]x$ und $\mathbb{Z}[\omega]y$ teilerfremd sind. Mit dem *Chinesischen Restsatz* folgt

$$\mathbb{Z}[\omega]/\mathbb{Z}[\omega]xy = \mathbb{Z}[\omega]/(\mathbb{Z}[\omega]x \cap \mathbb{Z}[\omega]y) \cong \mathbb{Z}[\omega]/\mathbb{Z}[\omega]x \times \mathbb{Z}[\omega]/\mathbb{Z}[\omega]y.$$

Somit gilt $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]xy)^{\times} \cong (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x \times \mathbb{Z}[\omega]/\mathbb{Z}[\omega]y)^{\times} = (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)^{\times} \times (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]y)^{\times}$. Womit schließlich folgt $\phi_{\mathbb{Z}[\omega]}(x \cdot y) = |(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]xy)^{\times}| = |(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)^{\times} \times (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]y)^{\times}| = |(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)^{\times}| \cdot |(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]y)^{\times}| = \phi_{\mathbb{Z}[\omega]}(x) \cdot \phi_{\mathbb{Z}[\omega]}(y)$.

Satz 3.8. Seien $x \in \mathbb{Z}[\omega], n \in \mathbb{N}^+$.

Falls $x \in \mathbb{Z}[\omega]$ ein Primelement ist so folgt $\phi_{\mathbb{Z}[\omega]}(x^n) = N(x)^{n-1}(N(x)-1)$.

Beweis. Seien

- $\pi_x : \mathbb{Z}[\omega] \longrightarrow \mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$
- $\pi_{x^{n-1}}: \mathbb{Z}[\omega] \longrightarrow \mathbb{Z}[\omega]/\mathbb{Z}[\omega]x^{n-1}$
- $\pi_{x^n}: \mathbb{Z}[\omega] \longrightarrow \mathbb{Z}[\omega]/\mathbb{Z}[\omega]x^n$

die kanonischen Homomorphismen. Es ist $\mathbb{Z}[\omega]x^n$ ein Ideal von $\mathbb{Z}[\omega]$ und $\mathbb{Z}[\omega]x^n \subset \mathbb{Z}[\omega]x = \ker(\pi_x)$. Somit folgt mit der *universellen Eigenschaft des Restklassenhomomorphisums*, dass es einen Ringhomomorphismus $f: \mathbb{Z}[\omega]/\mathbb{Z}[\omega]x^n \longrightarrow \mathbb{Z}[\omega]/\mathbb{Z}[\omega]x$ gibt sodass $f \circ \pi_{x^n} = \pi_x$.

Sei
$$\tilde{f} := f|_{(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x^n)^{\times}} : (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x^n)^{\times} \longrightarrow (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)^{\times}.$$

Wegen $f((\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x^n)^{\times}) \subset f((\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)^{\times})$ ist \tilde{f} wohldefiniert.

Sei nun $a \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)^{\times}$ beliebig, und $u \in \mathbb{Z}[\omega]$ ein Repräsentant bezüglich π_x also $\pi_x(u) = a$. Somit ist $GGT(u,x) = \mathbb{Z}[\omega]^{\times}$, und mit 2.2 folgt $GGT(u,x^n) = \mathbb{Z}[\omega]^{\times}$. Daher gilt $\pi_{x^n}(u) \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x^n)^{\times}$.

Womit man $a = \pi_x(u) = (f \circ \pi_{x^n})(u) = f(\pi_{x^n}(u)) = \tilde{f}(\pi_{x^n}(u))$ erhählt. Daher ist \tilde{f} surjektiv.

Aus dem Homomorphiesatz der Gruppentheorie ergibt sich $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)^{\times}/\ker(f) \cong (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)^{\times}$.

Wegen x prim in $\mathbb{Z}[\omega]$ folgt mit 3.5 dass $|(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)^{\times}/\ker(f)| = |(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)^{\times}| = N(x) - 1$.

Sei $u \in \mathbb{Z}[\omega]$. Weil x prim ist folgt: jeder Teiler von x^n muss eine Potenz von x sein. Da $x \nmid 1 + ux$ gilt, folgt nun $GGT(x^n, 1 + ux) = \mathbb{Z}[\omega]^{\times}$. Daher ist $\pi_{x^n}(1 + ux) \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x^n)^{\times}$. Wegen $\tilde{f}(\pi_{x^n}(1 + ux)) = f(\pi_{x^n}(1 + ux)) = \pi_x(1 + ux) = \pi_x(1) = 1$ folgt $\pi_{x^n}(1 + ux) \in \ker(f)$.

Seien $u_1, u_2 \in \mathbb{Z}[\omega]$, dann gelten folgende Äquivalenzen:

$$\pi_{x^n}(1+u_1x) = \pi_{x^n}(1+u_2x) \Leftrightarrow x^n|u_1x - u_2x = (u_1 - u_2)x \Leftrightarrow x^{n-1}|u_1 - u_2 \Leftrightarrow \pi_{x^{n-1}}(u_1) = \pi_{x^{n-1}}(u_2).$$

Sei daher $g: \mathbb{Z}[\omega]/\mathbb{Z}[\omega]x^{n-1} \to \ker(\tilde{f})$ definiert durch $g(\pi_{x^{n-1}}(u)) = \pi_{x^n}(1+ux)$. Durch die eben gezeigten Äquivalenzen ist g injektiv. g ist auch surjektiv, denn:

sei $x \in \ker(\tilde{f})$, dann existiert ein $v \in \mathbb{Z}[\omega]$ mit $y = \pi_{x^n}(v)$. Falls nun $\tilde{f}(y) = 1$ gilt, so folgt $\pi_x(v) = f(\pi_{x^n}(v)) = f(\pi_{x^n}(v)) = 1 = \pi_x(1)$. Somit gilt x|1-v, daher gibt es ein $u \in \mathbb{Z}[\omega]$ sodass x(-u) = 1-v bzw. v = 1 + ux. Somit folgt $g(\pi_{x^{n-1}}(u)) = \pi_{x^n}(1 + ux) = \pi_{x^n}(v) = y$, womit g surjektiv ist. Daher ist g eine Bijektion.

Somit folgt $\left|\ker(\tilde{f})\right| = \left|\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x^{n-1}\right| = N(x^{n-1}) = N(x)^{n-1}$. Da der $\ker(\tilde{f})$ eine Untergruppe von $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x^n)^{\times}$ ist folgt mit dem *Satz von Lagrange* dass

$$\phi_{\mathbb{Z}[\omega]}(x^n) = \left| (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x^n)^{\times} \right| = \left| (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x^n)^{\times}/\ker(\tilde{f}) \right| \cdot \left| \ker(\tilde{f}) \right| = (N(x) - 1) \cdot N(x)^{n-1}.$$

4 Zyklizität der Restklassengruppe $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]x)^{\times}$

Satz 4.1. Seien $\eta \in \mathcal{A}$ und $n \in \mathbb{N}^+$. Dann gilt: $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^n)^{\times}$ ist zyklisch $\iff n = 1$.

Beweis.

"\(\infty\) Sei n=1. Da $\eta \in \mathbb{Z}[\omega]$ prim ist folgt mit $3.5 \ \mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta$ ist ein Körper, wobei $|\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta| = N(\eta)$ gilt. Daher ist $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta)^{\times}$ endlich, und somit ist mit [2, Kapitel 2, Satz 3.4] die Einheitengruppe $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta)^{\times}$ zyklisch.

"⇒" Falls $n \geq 2$, so gilt $\phi_{\mathbb{Z}[\omega]}(\eta^{n-1}) = \left| (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^{n-1})^{\times} \right| = N(\eta)^{n-2}(N(\eta)-1) = p^{2(n-2)}(p^2-1).$ Die Ordnung von $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^{n-1})^{\times}$ ist ein Vielfaches der Ordnung eines jeden $d \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^{n-1})^{\times}$, womit für jedes $x \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^{n-1})^{\times}$ gilt $x^{p^{2(n-2)}(p^2-1)} = 1$. Sei nun $a \in \mathbb{Z}[\omega]$ mit $GGT(\eta, a) = \mathbb{Z}[\omega]^{\times}$, und seien

- $\bullet \ \pi_{\eta^{n-1}}: \mathbb{Z}[\omega] \longrightarrow (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^{n-1})^{\times}$
- $\pi_{\eta^n}: \mathbb{Z}[\omega] \longrightarrow (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^n)^{\times}$

die kanonischen Homomorphismen. Dann folgt $GGT(\eta^{n-1}, a) = \mathbb{Z}[\omega]^{\times}$ und daher gilt $\pi_{\eta^{n-1}}(a) \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^{n-1})^{\times}$. Somit folgt $\pi_{\eta^{n-1}}(a^{p^{2(n-2)}(p^2-1)}) = \pi_{\eta^{n-1}}(a)^{p^{2(n-2)}(p^2-1)} = 1$.

Womit $a^{p^{2(n-2)}(p^2-1)} \equiv 1 \mod \eta^{n-1}$ folgt. Daher gibt es ein $b \in \mathbb{Z}[\omega]$ mit $a^{p^{2n-4}(p^2-1)} = 1 + b\eta^{n-1}$. Somit gilt $a^{p^{2n-3}(p^2-1)} = (1 + b\eta^{n-1})^p$.

Damit gilt nun

$$(1+b\eta^{n-1})^p = \sum_{i=0}^p \binom{p}{i} b^i \eta^{i(n-1)} = 1 + pb\eta^{n-1} + \sum_{i=2}^p \binom{p}{i} b^i \eta^{i(n-1)} = 1 + pb\eta^{n-1} + pb\eta^{n-1} = 1 + pb\eta^{n-1} + pb\eta^{n-1} = 1 + pb\eta^{n-1}$$

$$1 + b\eta^n + \eta^{2(n-1)} \sum_{i=0}^p \binom{p}{i} b^i \eta^{(i-2)(n-1)} \equiv 1 + \eta^{2(n-1)} \sum_{i=0}^p \binom{p}{i} b^i \eta^{(k-2)(n-1)} \equiv 1 \mod \eta^n.$$

Wegen $n \ge 2$ gilt $2(n-1) = n + n - 2 \ge n$. Womit für jedes $a \in \mathbb{Z}[\omega]$ mit $GGT(\eta, a) = \mathbb{Z}[\omega]^{\times}$ folgt $a^{p^{2n-3}(p^2-1)} \equiv 1 \mod \eta^n$.

Sei nun $x \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^n)^{\times}$ und $a \in \mathbb{Z}[\omega]$ mit $x = \pi_{\eta^n}(a)$. Dann gilt $GGT(\eta^n, a) = \mathbb{Z}[\omega]^{\times}$, und somit $GGT(\eta, a) = \mathbb{Z}[\omega]^{\times}$. Daher folgt nun

$$x^{p^{2n-3}(p^2-1)} = \pi_{\eta^n}(a)^{p^{2n-3}(p^2-1)} = \pi_{\eta^n}(a^{p^{2n-3}(p^2-1)}) = 1.$$

womit man

$$ord(x) \le p^{2n-3}(p^2-1) < p^{2n-2}(p^2-1) = N(\eta)^{n-1}(N(\eta)-1) = \left| (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^n)^{\times} \right|$$

erhält.

Daher kann $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^n)^{\times}$ nicht zyklisch sein.

(Denn sonst existiert ein $q \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^n)^{\times}$ sodass $\langle q \rangle = (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^n)^{\times}$. Wobei dann $ord(q) = |\langle q \rangle| = |(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^n)^{\times}|$ gilt, was jedoch nach den eben Gezeigen nicht sein kann.)

Satz 4.2. Für $\pi_3 \in \mathcal{C}$ und $n \in \mathbb{N}$ gilt: $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_3^n)^{\times}$ ist zyklisch $\iff n \leq 2$.

Beweis. Aus 2.15 folgt $\pi_3 \sim (1-\omega)$. Sei $\Pi_{\pi_3^n}: \mathbb{Z}[\omega] \to \mathbb{Z}[\omega]/\pi_3^n \mathbb{Z}[\omega]$ der kanonische Homomorphismus.

"n=1" Wegen $|(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_3)^{\times}| = \phi_{\mathbb{Z}[\omega]}(\pi_3) = N(\pi_3) - 1 = 2$ ist $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_3)^{\times}$ eine Gruppe mit zwei Elementen. Diese wird vom Element $x \neq 1$ erzeugt (wegen $x^1 = x$ und $x^2 = 1$). Daher ist $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_3)^{\times}$ zyklisch.

15

"n=2" Wegen $\pi_3^2 \sim (1-\omega)^2 = 1-2\omega+\omega^2 = -3\omega+(\omega^2+\omega+1) = -3\omega$ ist zu zeigen dass $(\mathbb{Z}[\omega]/3\omega\mathbb{Z}[\omega])^{\times}$ zyklisch ist.

Es gilt dass $\left| (\mathbb{Z}[\omega]/\mathbb{Z}[\omega](1-\omega)^2)^{\times} \right| = N(1-\omega)^{2-1}(N(1-\omega)-1) = 3(3-1) = 6$. Somit ist ein Element $x \in (\mathbb{Z}[\omega]/3\omega\mathbb{Z}[\omega])^{\times}$ zu finden für das gilt ord(x) = 6.

Es gilt $1 = (\omega)(3\omega) + (1+\omega)(3-\omega)$. Daher gilt nach $2.2~GGT(3\omega,3-\omega) = \mathbb{Z}[\omega]^{\times}$. Mit 3.5~folgt nun dass $\Pi_{\pi_3^n}(3-\omega) \in (\mathbb{Z}[\omega]/3\omega\mathbb{Z}[\omega])^{\times}$ gilt. Für $3-\omega~\text{folgt}$ nun

 $ord(\Pi_{\pi_3^n}(3-\omega)) > 2$. Denn wegen

$$\frac{(3-\omega)^2 - 1}{3\omega} = \frac{7 - 7\omega}{3\omega} = \frac{7}{3}(-2 - \omega)$$

gilt $(3 - \omega)^2 - 1 \notin 3\omega \mathbb{Z}[\omega] = ker(\Pi_{\pi_3^n})$. Daher gilt $\Pi_{\pi_3^n}((3 - \omega)^2) \neq \Pi_{\pi_3^n}(1) = 1$. Somit ist $ord(\Pi_{\pi_3^n}(3 - \omega)) > 2$.

 $ord(\Pi_{\pi_2^n}(3-\omega)) > 3$. Denn wegen

$$\frac{(3-\omega)^3 - 1}{3\omega} = \frac{16 - 36\omega}{3\omega} = \frac{4}{3}(-13 - 4\omega)$$

gilt $(3 - \omega)^3 - 1 \notin 3\omega \mathbb{Z}[\omega] = ker(\Pi_{\pi_3^n})$. Daher gilt $\Pi_{\pi_3^n}((3 - \omega)^3) \neq \Pi_{\pi_3^n}(1) = 1$, womit $ord(\Pi_{\pi_2^n}(3 - \omega)) > 3$ folgt.

Da jedoch $ord(\Pi_{\pi_3^n}(3-\omega))$ ein Teiler von $\left|(\mathbb{Z}[\omega]/\mathbb{Z}[\omega](1-\omega)^2)^{\times}\right|=6$ sein muss, bleibt nur noch $ord(\Pi_{\pi_3^n}(3-\omega))=6$ übrig.

" $n \geq 3$ " Nach 3.8 ist $\left| (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_3^{n-2})^{\times} \right| = \phi_{\mathbb{Z}[\omega]}(\pi_3^{n-2}) = N(\pi_3)^{n-3}(N(\pi_3)-1) = 3^{n-3}2$. Weiters sei $\Pi_{\pi_3^{n-2}} : \mathbb{Z}[\omega] \to \mathbb{Z}[\omega]/\pi_3^{n-2}\mathbb{Z}[\omega]$ der kanonische Homomorphismus.

Somit folgt für alle $x \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_3^{n-2})^{\times}$ dass $x^{3^{n-3}2} = 1$ gilt, denn die Ordnung eines jeden Gruppenelements teilt die Gruppenordnung von $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_3^{n-2})^{\times}$.

Sei nun $a \in \mathbb{Z}[\omega]$ beliebig mit $GGT(\pi_3, a) = \mathbb{Z}[\omega]^{\times}$. Dann gilt $GGT(\pi_3^{n-2}, a) = \mathbb{Z}[\omega]^{\times}$. Daher folgt mit 3.5, dass $\Pi_{\pi_3^{n-2}}(a) \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_3^{n-2})^{\times}$ gilt. Damit erhält man

$$\Pi_{\pi_3^{n-2}}(a^{3^{n-3}2}) = \Pi_{\pi_3^{n-2}}(a)^{3^{n-3}2} = 1_{\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_3^{n-2}}$$

Was gleichbedeutend mit

$$a^{3^{n-3}2} \equiv 1_{\mathbb{Z}[\omega]} \ (mod(\pi_3^{n-2}))$$

ist. Somit gibt es ein $b \in \mathbb{Z}[\omega]$ sodass

$$a^{3^{n-3}2} = 1 + b\pi_3^{n-2}$$

gilt. Damit folgt

$$a^{3^{n-2}2} = (1 + b\pi_3^{n-2})^3.$$

Wegen $\pi_3 \in \mathcal{C}$ gilt $3 = \pi_3 \overline{\pi}_3$ und $\pi_3 \sim \overline{\pi}_3$. Daher gibt es ein $\epsilon \in \mathbb{Z}[\omega]^{\times}$ sodass $3 = \epsilon \pi_3^2$ gilt. Somit erhalten wir

$$a^{3^{n-2}2} = (1 + b\pi_3^{n-2})^3 = \sum_{k=0}^{3} {3 \choose k} b^k \pi_3^{k(n-2)} = 1 + 3b\pi_3^{n-2} + 3b^2 \pi_3^{2(n-2)} + b^3 \pi_3^{3(n-2)}$$

$$= 1 + \epsilon b \pi_3^n + \epsilon \pi_3^{2(n-1)} b^2 + b^3 \pi_3^{3(n-2)}$$

Wegen $n \ge 3$ folgt

$$a^{3^{n-2}2} \equiv 1 \mod(\pi_3^n).$$

Womit für alle $a \in \mathbb{Z}[\omega]$ mit $GGT(\pi_3, a) = \mathbb{Z}[\omega]^{\times}$ gilt $a^{3^{n-2}2} \equiv 1_{\mathbb{Z}[\omega]} \mod (\pi_3^n)$ folgt. Sei nun $x \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_3^n)^{\times}$ und $a \in \mathbb{Z}[\omega]$ mit $x = \Pi_{\pi_3^n}(a)$. Dann ist mit 3.5 $GGT(\pi_3^n, a) = \mathbb{Z}[\omega]^{\times}$ und daher auch $GGT(\pi_3, a) = \mathbb{Z}[\omega]^{\times}$. Nun folgt mit dem Vorangegangenen, dass

$$x^{3^{n-2}2} = \Pi_{\pi_3^n}(a)^{3^{n-2}2} = \Pi_{\pi_3^n}(a^{3^{n-2}2}) = 1$$

gilt. Somit erhält mann dass

$$ord(x) \le 3^{n-2}2 < 3^{n-1}2 = N(\pi_3)^{n-1}(N(\pi_3) - 1) = \left| (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_3^n)^{\times} \right|.$$

(Wegen $x \in (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_3^n)^{\times}$ beliebig, folgt nun dass $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_3^n)^{\times}$ kein erzeugendes Element besitzen kann.) Daher ist $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_3^n)^{\times}$ nicht zyklisch.

Satz 4.3. Seien $\eta \in \mathcal{B}$ und $p \in \mathfrak{B}$ sodass $p = \eta \overline{\eta}$, $\eta \nsim \overline{\eta}$ gelten, sowie $n \in \mathbb{N}^+$. Dann folgt $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^n)^{\times}$ ist zyklisch.

Beweis. Seien $j: \mathbb{Z} \hookrightarrow \mathbb{Z}[\omega]$ die Inklusion und $\pi_{\eta^n}: \mathbb{Z}[\omega] \to \mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^n$ der kanonische Homomorphismus.

Setzte

$$f: \left\{ \begin{array}{c} \mathbb{Z} \to \mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^n \\ a \mapsto \pi_{\eta^n}(j(a)) \end{array} \right.$$

dann ist f ein Ringhomomorphimus (da j und π_{n^n} Ringhomomorphismen sind). Dann folgt

$$\ker(f) = \{ a \in \mathbb{Z} | \pi_{\eta^n}(j(a)) = 0 \} = \{ a \in \mathbb{Z} | j(a) \in \ker(\pi_{\eta^n}) = \mathbb{Z}[\omega] \eta^n \} = \{ a \in \mathbb{Z} | a \in \mathbb{Z}[\omega] \eta^n \}$$
$$= \mathbb{Z} \cap \mathbb{Z}[\omega] \eta^n.$$

Zeige nun dass $p^n\mathbb{Z} = \mathbb{Z} \cap \mathbb{Z}[\omega]\eta^n$ gilt.

 \subseteq : Es gilt $p^n \mathbb{Z} \subset \mathbb{Z}$ und $p^n \mathbb{Z} = \eta^n \overline{\eta^n} \mathbb{Z} \subset \mathbb{Z}[\omega] \eta^n$. Somit folgt $p^n \mathbb{Z}[\omega] \subset \mathbb{Z} \cap \mathbb{Z}[\omega] \eta^n$.

 \supseteq : Sei $a \in \mathbb{Z} \cap \mathbb{Z}[\omega]\eta^n$. Dann besitzt a eine Darstellung der Form

$$a = \epsilon \cdot p^k \cdot q_1 \cdot \dots \cdot q_m \text{ mit } \epsilon \in \{-1, 1\}; \ k, m \in \mathbb{N}; \ q_1, \dots q_m \in \mathbb{P} \setminus \{p\}.$$

Damit gilt $a = \epsilon \cdot \eta^k \overline{\eta}^k \cdot q_1 \cdot ... \cdot q_m$. Wegen $\eta | p$ in $\mathbb{Z}[\omega]$ folgt mit 2.4 dass $\eta \nmid q_i$ in $\mathbb{Z}[\omega]$ für alle $i \in \{1, ..., m\}$. Wegen $\eta \nsim \overline{\eta}$ gilt $\eta \nmid \overline{\eta}$ in $\mathbb{Z}[\omega]$ und damit $\eta \nmid \overline{\eta}^k$. Da $\eta \in \mathcal{B}$ ist, ist η insbesondere prim in $\mathbb{Z}[\omega]$ und daher gilt $\eta \nmid \epsilon$.

Nach Vorraussetzung ist $a \in \mathbb{Z}[\omega]\eta^n$ und daher folgt $\eta^n|a$ in $\mathbb{Z}[\omega]$. Wegen der Eindeutigkeit von Satz 1.10 gilt $k \geq n$.

Also erhält man $p^n|p^k|a$ in \mathbb{Z} und daher $a \in p^n\mathbb{Z}$.

Aus dem *Homomorphiesatz der Ringtheorie* folgt nun die Existenz eines injektiven Ringomomorphismus $\overline{f}: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^n$. (Denn $p^n\mathbb{Z} = ker(f)$.)

Mit $|\mathbb{Z}/p^n\mathbb{Z}| = p^n = N(\eta)^n = N(\eta^n) = |\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^n|$ folgt wegen der Injektivität von \overline{f} sofort die Surjektivität von \overline{f} . Daher ist \overline{f} ein Ringisomorphismus, womit

$$\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^n \cong \mathbb{Z}/p^n\mathbb{Z}$$

folgt. Somit wird durch \overline{f} ein Gruppenisomorphismus $\underline{f}: (\mathbb{Z}/p^n\mathbb{Z})^{\times} \to (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^n)^{\times}$ induziert. Daher folgt

$$(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\eta^n)^{\times} \cong (\mathbb{Z}/p^n\mathbb{Z})^{\times}.$$

Wegen $p \in \mathfrak{C}$ folgt mit 1.2 und 2.10 dass p > 2 gilt. Daher folgt mit dem *Satz von Gauß* [1, Kapitel 5.5] dass $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ zyklisch ist. Womit die Behauptung folgt.

Lemma 4.4. Seien $n \in \mathbb{N}^+$ und $G_1, ..., G_n$ endliche Gruppen. Dann sind äquivalent

1. $G_1 \times ... \times G_n$ ist zyklisch.

2. $\forall i \in \{1, ..., n\}$ G_i ist zyklisch, und $\forall i, j \in \{1, ..., n\}, i \neq j$ gilt $ggT(|G_i|, |G_j|) = 1$.

Beweis. $1 \Longrightarrow 2$ Angenommen 2 gilt nich, z.z.: 1 kann nicht gelten.

- **1.Fall:** Sei $i \in \{1,..,n\}$ sodass G_i nicht zyklisch ist. Dann gilt für alle $g \in G_i$ existiert ein $h \in G_i$ sodass für alle $k \in \mathbb{N}^+$ $h \neq g^k$ gilt. Sei nun $\tilde{g} = (g_1,...,g_n) \in G_1 \times ... \times G_n$ beliebig. Dann existiert ein $h_i \in G_i$ sodass für alle $k \in \mathbb{N}^+$ gilt $h_i \neq g_i^k$. Daher folgt fr alle $k \in \mathbb{N}^+$ dass $(1_{G_1},...,h_i,...,1_{G_n}) \neq \tilde{g}^k$ gilt (mit komponentenweiser Verknüpfung). Womit \tilde{g} kein erzeugendes Element sein kann, und daher $G_1 \times ... \times G_n$ kein erzeigendes Element besitzt. Somit ist $G_1 \times ... \times G_n$ nicht zyklisch.
- **2.Fall:** Seien jetzt $n \geq 2$ und $i, j \in \{1, ..., n\}, i \neq j$ mit $ggT(|G_i|, |G_j|) > 1$. Sei nun $g = (g_i, g_j) \in G_i \times G_j$ beliebig, dann ist $g_i^{|G_i|} = 1_{G_i}$ und $g_j^{|G_j|} = 1_{G_j}$. Somit gilt dass $g^{kgV(|G_i|, |G_j|)} = (g_i^{kgV(|G_i|, |G_j|)}, g_j^{kgV(|G_i|, |G_j|)}) = (1_{G_i}, 1_{G_j}) = 1_{G_i \times G_j}$. Wegen $ggT(|G_i|, |G_j|) > 1$ folgt

$$\operatorname{ord}(g) \leq kgV(\left|G_{i}\right|,\left|G_{j}\right|) = \frac{\left|G_{i}\right|\left|G_{j}\right|}{ggT(\left|G_{i}\right|,\left|G_{j}\right|)} < \left|G_{i}\right|\left|G_{j}\right| = \left|G_{i} \times G_{j}\right|.$$

Daher kann g kein erzeugendes Element sein. Somit ist $G_i \times G_j$ nicht zyklisch. Daher gilt, mit Fall 1, (wobei o.E. j=i+1 gelte) dass $G_1 \times ... \times (G_i \times G_j) \times ... \times G_n$ nicht zyklisch ist. Womit folgt dass $G_1 \times ... \times G_n$ nicht zyklisch ist.

- $(2) \Longrightarrow (1)$ Induktion nach n:
 - n=1 gilt trivialerweise.
 - n=2 Seien $m_1, m_2 \in \mathbb{N}^+$ mit $m_1=|G_1|$ und $m_2=|G_2|$. Aus dem *Struktursatz für zyklische Gruppen* erhält man $G_1 \cong \mathbb{Z}/m_1\mathbb{Z}$ und $G_2 \cong \mathbb{Z}/m_2\mathbb{Z}$. Nach Vorraussetzung gilt $ggT(m_1, m_2)=1$ und daher folgt mit dem *Chinesischen Restsatz* dass

$$G_1 \times G_2 \cong \mathbb{Z}/m_1\mathbb{Z} \times \mathbb{Z}/m_2\mathbb{Z} \cong \mathbb{Z}/m_1m_2\mathbb{Z}$$

- gilt. Womit $G_1 \times G_2$ zyklisch ist (denn $\mathbb{Z}/m_1m_2\mathbb{Z}$ ist zyklisch).
- $n \geq 3$ Sei die Behauptung für n-1 gezeigt. Nach Vorraussetzung ist für alle $i, j \in \{1, ..., n-1\}$ G_i zyklisch, und falls $i \neq j$ ist gilt $ggT(|G_i|, |G_j|) = 1$. Weiters ist $G_1 \times ... \times G_{n-1}$ zyklisch. Wegen $G_1 \times ... \times G_n \cong (G_1 \times ... \times G_{n-1}) \times G_n$ und $ggT(|G_i|, |G_n|) = 1 \ \forall i \in \{1, ..., n-1\}$ gilt $ggT(|G_1 \times ... \times G_{n-1}|, |G_n|) = ggT(|G_1| \cdot ... \cdot |G_{n-1}|, |G_n|) = 1$. Daher folgt mit der Induktionsvorraussetzung dass $(G_1 \times ... \times G_{n-1}) \times G_n$ zyklisch ist, und somit ist $G_1 \times ... \times G_n$ zyklisch.

Satz 4.5. Sei $a \in \mathbb{Z}[\omega]$, dann ist $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]a)^{\times}$ genau in folgenden Fällen zyklisch:

- 1. $a \in \mathbb{Z}[\omega]^{\times} \cup \{0\}$.
- 2. $a \sim (1 \omega)^n$ mit $n \in \mathbb{N}^+$ und n < 2.
- 3. $a \sim \eta \text{ mit } \eta \in \mathcal{A}$.
- 4. $a \sim \eta^n \text{ mit } \eta \in \mathcal{B} \text{ und } n \in \mathbb{N}^+.$
- 5. $a \sim 2(1 \omega)$.
- Beweis. (1): Sei $a \in \mathbb{Z}[\omega]^{\times}$. Wegen $\mathbb{Z}[\omega]/\mathbb{Z}[\omega]a = \mathbb{Z}[\omega]/\mathbb{Z}[\omega] \cong \{0\}$ folgt dass $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]a)^{\times} \cong \{0\}^{\times} = \{0\} = \langle 0 \rangle$, womit $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]a)^{\times}$ zyklisch ist. Und falls a = 0 gilt so folgt $\mathbb{Z}[\omega]/\mathbb{Z}[\omega]a \cong \mathbb{Z}[\omega]$. Daher folgt mit 1.3 $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]a)^{\times} \cong \mathbb{Z}[\omega]^{\times} = \langle -\omega \rangle$.
- (2,3,4): Nach 1.10 besitzt a die Darstellung

$$a = \epsilon \prod_{\pi \in \mathcal{P}} \pi^{\alpha_{\pi}}$$

mit $\epsilon \in \mathbb{Z}[\omega]^{\times}$, $\alpha_{\pi} \in \mathbb{N}$ und $\alpha_{\pi} = 0$ für fast alle $\pi \in \mathcal{P}$. Seien nun $\pi_1, \pi_2 \in \mathcal{P}$ mit $\pi_1 \neq \pi_2$. Wegen π_1, π_2 prim in $\mathbb{Z}[\omega]$ und $\pi_1 \nsim \pi_2$ gilt $GGT(\pi_1, \pi_2) = \mathbb{Z}[\omega]^{\times}$. Daher folgt $GGT(\pi_1^k, \pi_2^l) = \mathbb{Z}[\omega]^{\times}$ für alle $k, l \in \mathbb{N}^+$. Mit 2.2 folgt $1 \in (\mathbb{Z}[\omega]\pi_1^k + \mathbb{Z}[\omega]\pi_2^l)$, womit $\mathbb{Z}[\omega] = \mathbb{Z}[\omega]\pi_1^k + \mathbb{Z}[\omega]\pi_2^l$ gilt. Daher sind die Ideale $\mathbb{Z}[\omega]\pi_1^k$ und $\mathbb{Z}[\omega]\pi_2^l$ teilerfremd. Somit folgt mit dem *Chinesischen Restsatz*

$$\mathbb{Z}[\omega]/\mathbb{Z}[\omega]a = \mathbb{Z}[\omega]/\mathbb{Z}[\omega]\epsilon \prod_{\pi \in \mathcal{P}} \pi^{\alpha_{\pi}} = \mathbb{Z}[\omega]/\prod_{\pi \in \mathcal{P}} \mathbb{Z}[\omega]\pi^{\alpha_{\pi}} \cong \prod_{\pi \in \mathcal{P}} \mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi^{\alpha_{\pi}}.$$

Daher gilt

$$(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]a)^{\times} \cong (\prod_{\pi \in \mathcal{P}} \mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi^{\alpha_{\pi}})^{\times} = \prod_{\pi \in \mathcal{P}} (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi^{\alpha_{\pi}})^{\times}.$$

Ist $a = \epsilon \pi^{\alpha}$ dann treffen die Behauptungen 2,3,4 nach 4.2,4.3 und 4.4 zu.

(5): Sei nun $a = \epsilon \pi_1^{\alpha_1} \cdot \dots \cdot \pi_m^{\alpha_m}$ mit $m \geq 2$. Es gilt

$$(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]a)^{\times} \cong \prod_{i=1}^{m} (\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_i^{\alpha_i})^{\times}.$$

Daher muss als Vorraussetzung für $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]a)^{\times}$ zyklisch gelten, dass für jedes $i \in \{1,...,m\}$ $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_i^{\alpha_i})^{\times}$ zyklisch ist.

Somit verbleibt für $i \in \{1, ..., m\}$ nur mehr die Möglichkeiten

- $\pi_i \in \mathcal{A} \text{ und } \alpha_i = 1$
- $\pi_i \in \mathcal{B} \text{ und } \alpha_i \in \mathbb{N}$
- $\pi_i \in \mathcal{C}$ und $\alpha_i \leq 2$

Weiters müssen für die Zyklizität von $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]a)^{\times}$ auch die Gruppenordnungen $\phi_{\mathbb{Z}[\omega]}(\pi_i^{\alpha_i})$ aller Gruppen $(\mathbb{Z}[\omega]/\mathbb{Z}[\omega]\pi_i^{\alpha_i})^{\times}$ paarweise teilerfremd sein.

Für $\pi_p \in \mathcal{A}$ gilt mit 2.15 dass $p \equiv 2 \mod (3)$. Damit folgt $p^2 \equiv 4 \equiv 1 \mod (3)$, und somit gilt: $p^2 - 1 \in 3\mathbb{N}$. Für $i \in \{1, ..., m\}$ gilt:

- $\pi_i \in \mathcal{A}$ so folgt $\phi_{\mathbb{Z}[\omega]}(\pi_i^{\alpha_i}) = N(\pi_i)^{\alpha_i 1}(N(\pi_i) 1) = (p^2 1) \in 3\mathbb{N}^+$, nach dem eben gezeigten.
- $\pi_i \in \mathcal{B}$ so folgt $\phi_{\mathbb{Z}[\omega]}(\pi_i^{\alpha_i}) = N(\pi_i)^{\alpha_i 1}(N(\pi_i) 1) = p^{\alpha_i 1}(p 1) \in 3\mathbb{N}^+$, denn nach 2.15 folgt unmittelbar dass $p 1 \in 3\mathbb{N}^+$ gilt.
- $\pi_i \in \mathcal{C}$ so folgt $\phi_{\mathbb{Z}[\omega]}(\pi_i^{\alpha_i}) = N(\pi_i)^{\alpha_i 1}(N(\pi_i) 1) = p^{\alpha_i 1}(p 1) = 2 \cdot 3^{\alpha_i 1}$.

Daraus folgt dass in der Primfaktorzerlegung von a höchstens ein träges oder unverzweigtes Primelement auftreten kann. Als zweites Primelement ist dazu nur $1-\omega$ möglich. Da $\phi_{\mathbb{Z}[\omega]}((1-\omega)^2)=6$ gilt bleibt nur noch $1-\omega$ zu betrachten. Falls nun $\eta\in\mathcal{A}$ und $a\sim(1-\omega)\eta$ gilt, dann folgt $\eta=\pi_p$ und $p\equiv 2\mod(3)$. Wegen $\phi_{\mathbb{Z}[\omega]}(1-\omega)=2$ und $\phi_{\mathbb{Z}[\omega]}(\pi_p)=p^2-1$ muss $ggT(2,p^2-1)=1$ gelten. Dann gelten folgende Äquivalenzen:

$$ggT(2, p^2 - 1) = 1 \Leftrightarrow p^2 - 1$$
 ist ungerade $\Leftrightarrow p$ ist gerade $\Leftrightarrow p = 2$

Womit der Punkt (5) folgt. Falls nun $\eta \in \mathcal{B}$ und $a \sim (1-\omega)\eta^n$, mit $n \in \mathbb{N}$ gilt. Dann gilt $\eta = \pi_p$ und mit 1.2 ist $N(\pi_p) \neq 2$. Daher gilt $\phi_{\mathbb{Z}[\omega]}(\pi_p^n) = p^{n-1}(p-1)$ ist immer gerade, womit die Ordnungen der beiden auftretenden Gruppen nicht mehr teilerfemd wären. Daher kann dies nicht auftreten.

Literatur

- [1] Bundschuh, Peter: Einführung in die Zahlentheorie. 6., überarb. und aktualisierte Aufl. Berlin, Heidelberg: Springer, 2008
- [2] REMMERT, Reinhold ; ULLRICH, Peter: *Elementare Zahlentheorie*. 2., korrigierte Aufl. Basel, Boston, Berlin : Birkhäuser, 1995