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Chapter 1

Introduction

The aim of this thesis is to investigate the applicability of two optimization algorithms in shape

space and to apply them to the shape from shading (SFS) problem. More precisely, we use

the steepest descent method and the nonlinear conjugate gradient (NCG) method to solve the

SFS-problem in a certain shape space which we endow with an appropriate Riemannian inner

product. Instead of steps along straight lines we shall take steps along geodesics with respect

to the Riemannian metric. Moreover, we will have to use the concept of parallel displacement

in order to apply the NCG-algorithm.

In the context of optimization in vector spaces one often pursues the following idea. Given

a vector space V , a function f : V → R and a point x0 ∈ V , one chooses a descent direction

v ∈ V . Then a linesearch method with a certain step-size control is performed to find a scalar

α ∈ R. The new iterate is then defined by x1 := x0 + α · v. This idea essentially uses the

underlying vector space structure of V . First, the descent direction v is a priori in the tangent

space Tx0V ; but since V is a vector space, Tx0V can be identified with V . Second, the definition

of x1 makes use of the operations + and · in V . In the more general setting of Riemannian

manifolds such identifications and vector operations are not at hand, hence, one has to use a

different strategy, for example the following one. Given a manifold M , a function f : M → R
and a point x0 ∈ M , one chooses a descent direction v ∈ Tx0M . Then one calculates the

geodesic u : R→M through x0 parametrized by arc length with u(0) = x0 and tangent vector

u̇(0) = v. Afterwards a linesearch method with a certain step-size control is performed to find a

scalar α ∈ R. The new iterate is then defined by x1 := u(α). The descent direction depends for

sure on the optimization method which is used. Subsequently, we shall concentrate ourselves

on the (geodesic) steepest descent and the (geodesic) NCG-method using the Fletcher-Reeves

scheme. The latter method has been analyzed by W. Ring and B. Wirth [7] in the context of

Riemannian manifolds.

A special Riemannian manifold is a shape space, which is endowed with a certain Rieman-

nian inner product. In general, a shape space is a set whose elements can be identified with

geometrical objects. These objects may be smooth curves or surfaces as well as polygons and

other types of geometrical shapes. For typical examples, which are recently studied in research,
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2 CHAPTER 1. INTRODUCTION

see the article of P. Michor and D. Mumford [6] for infinite-dimensional shape spaces and the

article of M. Kilian et al. [4] for finite-dimensional shape spaces. However, we will use the

shape space of triangular meshes in R3 to solve the SFS-problem. This shape space shall be

endowed with different Riemannian metrics in order to compare the results of the optimization

algorithms for these different metrics in the shape space.

Roughly speaking, the SFS-Problem is the following: Given a shading image of a surface,

i.e. an image of the surface which is illuminated in a certain way, we want to reconstruct this

surface. The first approach towards a solution of this problem was presented by Horn in [2].

The basic idea is to determine several paths on the surface, so called characteristics. In order

to reconstruct the surface topography sufficiently well, several characteristics which are close

enough to each other are necessary. See [2] and also [5] for a more detailed description of this

approach. However, there are several other methods which have been proposed within the last

decades to solve the SFS-Problem. An overview of these methods is given in [8].

The organization of the thesis is as follows. Chapter 2 is devoted to the theoretical studies

which are necessary to implement the steepest descent algorithm and the NCG-algorithm in a

shape space with a Riemannian metric. In chapter 3 we apply these minimization algorithms to

solve the SFS-problem for three different shapes. In addition, we compare the obtained results

for different Riemannian metrics in an appropriate shape space. Finally, a short chapter with

remarks and an outlook to future research concludes the thesis.

In detail, we establish all the results from the literature in section 2.1 which we need for

the remainder of the thesis. Subsection 2.1.1 collcets fundamental definitions, like manifolds

and tangent vectors. Subsection 2.1.2 derives the geodesic equation and the equation of par-

allel translation for a general connection on a manifold. To the end, we proof that there

exists a unique torsion free and metric connection on each Riemannian manifold – the Levi-

Civita-connection. Subsection 2.1.3 introduces the notion of shape spaces and provides several

examples. Besides, various technical notations will be defined in this subsection. Afterwards,

we construct various Riemannian metrics in section 2.2. In section 2.3 we deduce the ex-

plicit geodesic equations for the considered metrics, and in section 2.4 we establish the explicit

equations of parallel translation for these metrics.

After a short introduction to the SFS-problem, we define in section 3.1 that function on

the shape space which we will minimize in order to solve the SFS-problem. For this case,

we also calculate the optimal descent direction for each Riemannian metric. In section 3.2

we present the implementation of the two considered optimization techniques. The steepest

descent method and the function evaluating the geodesic equations will be discussed in sub-

section 3.2.1; the NCG-method together with the function calculating the parallel translate of

a vector is explained in subsection 3.2.2. Finally, we collect in section 3.3 the results which we

obtained with the different Riemannian metrics and the two minimization algorithms. In this

context, we shall compare numerical facts as well as the visual impression of the reconstructed

surfaces.



Chapter 2

Construction Of Optimization

Algorithms In Shape Space

2.1 Tools from Differential Geometry

2.1.1 Preliminaries

The concepts of differential geometry presented below are nowadays standard techniques, so

there will be nothing new to researchers. Instead, the subsections 2.1.1 and 2.1.2 should be

seen as a collection of facts which will be necessary or important for the subsequent studies in

the thesis. The following ideas and proofs are mainly based on [1] and [3].

Definition 2.1. A manifold Mn of dimension n is a set satisfying the following properties.

� Mn is a connected Hausdorff space with a countable base at each p ∈Mn.

� There exists an open covering C of Mn with the following property. For every U ∈ C
there exists an open set Ω ⊂ Rn and a homeomorphism xU : U → Ω. (We call U a

(coordinate) patch, xU a (coordinate) map (or local coordinates of Mn) and (U, xU ) a

(coordinate) chart.)

Moreover, we call a manifold Mn a differentiable manifold, if for all U, V ∈ C with U ∩ V 6= ∅,

xV ◦ x−1U : xU (U ∩ V )→ xV (U ∩ V )

is differentiable.

Definition 2.2. Let Mn be a differentiable manifold.

1. A pair (W, y) of an open set W ⊂ Mn and a homeomorphism y : W → y(W ) ⊂ Rn is

called compatible with Mn, if for all charts (U, xU ) with U ∩W 6= ∅,

y ◦ x−1U : xU (U ∩W )→ y(U ∩W ) and xU ◦ y−1 : y(U ∩W )→ xU (U ∩W )

3



4 CHAPTER 2. CONSTRUCTION OF OPTIMIZATION ALGORITHMS IN SHAPE SPACE

are differentiable.

2. We call

A :=
{

(W, y)
∣∣(W, y) is compatible with Mn

}
an atlas of Mn.

Definition 2.3. Let Mn be a differentiable manifold, p ∈Mn andAp := {(U, xU ) ∈ A
∣∣ p ∈ U}.

Then, a tangent vector X at p is a map

X :

{
Ap → Rn,
(U, xU ) 7→ XU = (X1

U , ..., X
n
U )

such that for all (U, xU ), (V, xV ) ∈ Ap,

Xi
V =

n∑
j=1

(
∂xiV
∂xjU

(p)

)
Xj
U .

The tangent space TpM
n to Mn at p is the set of all tangent vectors to Mn at p, and the

tangent bundle

TMn :=
⋃

p∈Mn

TpM
n

is the union of all tangent spaces TpM
n.

Remark 2.4. Alternatively, one may also use the following equivalent definition of a tangent

vector. Let Mn be a differentiable manifold, p ∈ Mn and Ap := {(U, xU ) ∈ A
∣∣ p ∈ U}. Now,

let 0 ∈ I ⊂ R be an open interval and γ : I → Mn be a differentiable curve with γ(0) = p.

Then, for all (U, xU ) ∈ Ap there exists an open interval 0 ∈ JU ⊂ I such that γ(JU ) ⊂ U and

γU := xU ◦ γ : JU → Rn

is differentiable. Hence, we may consider the vector

XU = (X1
U , ..., X

n
U ) := γ′U (0) ∈ Rn.

A tangent vector X at p can now be defined as the collection of all vectors XU with (U, xU ) ∈
Ap; formally we write

X = (XU )(U,xU )∈Ap
.

Furthermore, we also have that for all (U, xU ), (V, xV ) ∈ Ap,

XV =
d

dt
(xV ◦ γ)(0) =

d

dt
(xV ◦ x−1U ◦ xU ◦ γ)(0) = D(xV ◦ x−1U ) ((xU ◦ γ)(0)) · d

dt
(xU ◦ γ)(0)

and, consequently,

Xi
V =

((
∂xV
∂xU

(p)

)
ij

·XU

)
i

=

n∑
j=1

(
∂xiV
∂xjU

(p)

)
Xj
U .
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Remark 2.5. LetMn be a differentiable manifold, p ∈Mn, U, V coordinate patches containing

p, f ∈ C∞(Mn) and X ∈ TpMn. Then,

n∑
i=1

(
∂f

∂xiV
(p)

)
Xi
V =

n∑
i=1

(
∂f

∂xiV
(p)

) n∑
j=1

(
∂xiV
∂xjU

(p)

)
Xj
U =

n∑
j=1

(
∂f

∂xjU
(p)

)
Xj
U .

Consequently, the following definition is independent of the coordinates used.

Definition 2.6. Let Mn be a differentiable manifold, p ∈ Mn, (x1, ..., xn) local coordinates

on Mn around p, f ∈ C∞(Mn) and X ∈ TpMn. Then, we define

X(f) :=

n∑
i=1

(
∂f

∂xi
(p)

)
Xi.

Remark 2.7. In the situation of definition 2.6, one immediately sees that TpM
n is a real

vector space and that {
∂

∂x1

∣∣∣
p
, ...,

∂

∂xn

∣∣∣
p

}
is a basis of TpM

n. Consequently, each tangent vector X ∈ TpM
n can be identified with a

differential operator on smooth functions f ∈ C∞(Mn).

Definition 2.8. Let Mn be a differentiable manifold, (U, x) a coordinate chart. Then, a vector

field X on U is a map

X :


U → TMn,

p 7→ Xp =
n∑
i=1

Xi(p) ∂
∂xi

∣∣
p
.

where Xi ∈ C∞(U) holds for all i ∈ {1, ..., n}. The set of all tangent vector fields on Mn is

denoted by V(Mn).

Remark 2.9. For the remainder of the thesis, we make the following conventions. Every

manifold is assumed to be a differentiable manifold; and every curve in a manifold is assumed

to be of class C∞. In addition, we shall often use the notation

∂i :=
∂

∂ui

for the basis vectors of the tangent space TpM
n to a manifold Mn at a point p ∈ Mn. If Mn

is a manifold with a (Pseudo-)Riemannian metric 〈·, ·〉, we denote the (pseudo-)metric tensor

and its inverse by

gij := 〈∂i, ∂j〉 and gij := (G−1)ij where G := (gij)ij .

Furthermore, we use the Einstein summation convention: Any index which occurs twice in a

product is to be summed from 1 up to the space dimension, e.g.

aibj∂i∂j =
n∑
i=1

n∑
j=1

aibj∂i∂j .
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2.1.2 Connections, Geodesics and Parallel Transport

Definition 2.10. Let Mn be a manifold. Then, a map D : V(Mn) × V(Mn) → V(Mn) is

called a connection on Mn, if the following properties are satisfied for all v, w,X, Y ∈ V(Mn),

a, b ∈ R and f ∈ C∞(Mn):

DX(av + bw) = aDXv + bDXw,

DaX+bY v = aDXv + bDY v,

DX(fv) = X(f)v + fDXv.

Moreover, we call a connection D torsion free, if for all X,Y ∈ V(Mn),

[X,Y ] = DXY −DYX,

where [X,Y ] denotes the Lie bracket. If Mn is a Riemannian manifold with metric 〈·, ·〉, we

call a connection D metric, if for all Z ∈ V(Mn),

X〈Y,Z〉 = 〈DXY,Z〉+ 〈Y,DXZ〉.

Definition 2.11. Let Mn be a manifold, D a connection on Mn, U a coordinate patch and

(e1, ..., en) a basis of TpM
n for all p ∈ U . Then, the symbols ωijk defined via

Dejek = eiω
i
jk

are called the coefficients of the connection D with respect to (e1, ..., en).

Definition 2.12. Let Mn be a manifold with local coordinates (u1, ..., un), D a connection on

Mn, x = x(u(t)) a curve in Mn, Y ∈ V(Mn) and T ∈ V(Mn) such that T = dx/dt along x.

1. x is called a geodesic, if

DTT = 0.

2. Y is said to be parallel displaced along x, if

DTY = 0.

Proposition 2.13. Let Mn be a manifold with local coordinates (u1, ..., un), D a connection

on Mn, x = x(u(t)) a curve in Mn, Y ∈ V(Mn), T ∈ V(Mn) such that T = dx/dt along x.

1. x is a geodesic, if and only if

d2ui

dt2
+ ωijk

duj

dt

duk

dt
= 0 for all i ∈ {1, ..., n}. (2.1)

2. Y is parallel displaced along u, if and only if

dY i

dt
+ ωijk

duj

dt
Y k = 0 for all i ∈ {1, ..., n}. (2.2)
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Proof. Let

T =
dx

dt
=
dui

dt

∂

∂ui
= T i

∂

∂ui

denote the tangent vector field of x.

1. We use the properties of the connection D and find

DTT = DT j ∂

∂uj

(
T k

∂

∂uk

)
= T jD ∂

∂uj

(
T k

∂

∂uk

)
= T j

(
∂T k

∂uj
∂

∂uk
+ T kD ∂

∂uj

∂

∂uk

)
= T j

(
∂T k

∂uj
∂

∂uk
+ T kωijk

∂

∂ui

)
= T j

(
∂T i

∂uj
+ T kωijk

)
∂

∂ui

=

(
duj

dt

∂T i

∂uj
+ ωijkT

jT k
)

∂

∂ui
=

(
dT i

dt
+ ωijkT

jT k
)

∂

∂ui
.

Thus, the claim follows since (∂/∂u1, ..., ∂/∂un) form a basis for each tangent space.

2. Using the same arguments as above and the representation

Y = Y i ∂

∂ui

one finds

DTY = DT j ∂

∂uj

(
Y k ∂

∂uk

)
= T jD ∂

∂uj

(
Y k ∂

∂uk

)
= T j

(
∂Y k

∂uj
∂

∂uk
+ Y kD ∂

∂uj

∂

∂uk

)
= T j

(
∂Y k

∂uj
∂

∂uk
+ Y kωijk

∂

∂ui

)
= T j

(
∂Y i

∂uj
+ Y kωijk

)
∂

∂ui

=

(
duj

dt

∂Y i

∂uj
+ ωijkT

jY k

)
∂

∂ui
=

(
dY i

dt
+ ωijkT

jY k

)
∂

∂ui
,

the desired representation.

Definition 2.14. In the sequel, we call equation (2.1) the geodesic equation and equation (2.2)

the equation of parallel translation.

Lemma 2.15. Let Mn be a manifold, D a torsion free connection on Mn and (u1, ..., un) be

local coordinates for Mn. Then

ωijk = ωikj

for all i, j, k ∈ {1, ..., n} with respect to (∂/∂u1, ..., ∂/∂un).

Proof. Let X,Y be tangent vector fields on Mn. We know that the i-th component of the Lie

bracket is given by

[X,Y ]i = Xj ∂Y
i

∂uj
− Y j ∂X

i

∂uj

and that

(DXY −DYX)i = (D∂jXj∂kY
k −D∂jY j∂kX

k)i = (XjD∂j∂kY
k − Y jD∂j∂kX

k)i

=

(
Xj ∂Y

k

∂uj
∂k +XjY kD∂j∂k − Y

j ∂X
k

∂uj
∂k −XkY jD∂j∂k

)i
= Xj ∂Y

i

∂uj
+XjY kωijk − Y j ∂X

i

∂uj
−XkY jωijk.
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Thus, one finds after changing indices

0 = XjY k(ωijk − ωikj),

and therefore, ωijk = ωikj for all i, j, k ∈ {1, ..., n}.

Remark 2.16. Due to the result of Lemma 2.15, torsion free connections are often called

symmetric since its coefficients are symmetric in the two lower indices. In the sequel, we will

prefer the term torsion free for such a connection.

Definition 2.17. Let Mn be a manifold with a connection D, U ⊂ R, x : U →Mn, x = x(t)

be a curve, Y ∈ V(Mn) and T ∈ V(Mn) such that T = dx/dt along x. Then we set, along x,

D

dt
Y :=

DY

dt
:= DTY.

Lemma 2.18. Let Mn be a manifold with a torsion free connection D, U ⊂ R2 open with

coordinates (u, v) and x : U →Mn be twice continuously differentiable. Then

D

∂u

(
∂x

∂v

)
=
D

∂v

(
∂x

∂u

)
.

Proof. At first, we choose local coordinates (y1, ..., yn) of Mn. Then we know that ∂x/∂u =

(∂yi/∂u)∂/∂yi and ∂x/∂v = (∂yj/∂v)∂/∂yj . Consequently,

D

∂u

(
∂x

∂v

)
= D ∂yi

∂u
∂

∂yi

(
∂yj

∂v

∂

∂yj

)
=
∂yi

∂u
D ∂

∂yi

(
∂yj

∂v

∂

∂yj

)
=

∂yi

∂u

(
∂2yj

∂yi∂v

∂

∂yj
+
∂yj

∂v
D ∂

∂yi

(
∂

∂yj

))
=

∂2yj

∂u∂v

∂

∂yj
+
∂yi

∂u

∂yj

∂v
ωkij

∂

∂yk

and since D is torsion free, ωkij = ωkji. Hence, the last expression is symmetric in u and v,

which prooves the claim.

Lemma 2.19. Let Mn be a manifold with a metric connection D, x(t) a curve in Mn, U, V ∈
V(Mn) and T ∈ V(Mn) such that T = dx/dt along x. Then, along x,

d

dt
〈U, V 〉 =

〈
DU

dt
, V

〉
+

〈
U,
DV

dt

〉
.

Proof. From the characterization of tangent vectors to a manifold as differential operators, we

know that T 〈U, V 〉 is the directional derivative of 〈U, V 〉 in direction T , therefore T 〈U, V 〉 =

d/dt〈U, V 〉 along x. Thus, using definition 2.17, we find

d

dt
〈U, V 〉 = T 〈U, V 〉 = 〈DTU, V 〉+ 〈U,DTV 〉 =

〈
DU

dt
, V

〉
+

〈
U,
DV

dt

〉
since D was assumed to be a metric connection.
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Theorem 2.20. Let Mn be a Riemannian manifold with metric 〈·, ·〉. Then there exists a

unique metric and torsion free connection ∇ : V(Mn)×V(Mn)→ V(Mn). This connection is

given by

〈∇XY, Z〉 =
1

2

(
X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉 − 〈X, [Y,Z]〉+ 〈Y, [Z,X]〉+ 〈Z, [X,Y ]〉

)
(2.3)

and with local coordinates (x1, ..., xn),

ωijk =
1

2
gli
(
∂glj
∂xk

+
∂gkl
∂xj
−
∂gjk
∂xl

)
(2.4)

with respect to (∂/∂x1, ..., ∂/∂xn).

Proof. First, we show the uniqueness of such a connection. For this case, let ∇ be a metric

and torsion free connection and X,Y, Z ∈ V(Mn). Then

X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉
= 〈∇XY,Z〉+ 〈Y,∇XZ〉+ 〈∇Y Z,X〉+ 〈Z,∇YX〉 − 〈∇ZX,Y 〉 − 〈X,∇ZY 〉
= 2〈∇XY, Z〉 − 〈Z, [X,Y ]〉+ 〈Y, [X,Z]〉+ 〈X, [Y,Z]〉

which proves the claimed representation using [X,Z] = −[Z,X]. Hence, such a connection is

unique.

Now, define for each fixed X,Y ∈ V(Mn) the smooth covector field α such that α(Z) for

Z ∈ V(Mn) is the right-hand-side of equation (2.3). Then α(Z) is R-linear in Z. At each point

p ∈Mn the tangent space TpM
n is finite dimensional and

i : TpM
n → T ∗pM

n, i(u)(v) = 〈u, v〉

is an injective linear map since the Riemannian metric 〈·, ·〉 is nondegenerate; hence, i must be

an isomorphism and T ∗pM
n can be identified with TpM

n via i. Now, α ∈ T ∗pMn, and therefore,

there exists a unique vector A(p) ∈ TpMn such that α(Z(p)) = 〈A(p), Z(p)〉. Consequently,

there exists a unique vector field A ∈ V(Mn) such that

α(Z) = 〈A,Z〉.

In deed, A is smooth since α is a smooth covector field. We then set ∇XY := A and have

to show, that this defines a metric and torsion free connection. At first, R-linearity is clear

since the right-hand-side of equation (2.3) is linear in X and Y . Furthermore, observe that for

f ∈ C∞(Mn),

〈∇X(fY ), Z〉

=
1

2
(X〈fY, Z〉+ fY 〈Z,X〉 − Z〈X, fY 〉 − 〈X, [fY, Z]〉+ 〈fY, [Z,X]〉+ 〈Z, [X, fY ]〉)

= f〈∇XY, Z〉+
1

2
(〈X(f)Y,Z〉 − 〈X,Z(f)Y 〉+ 〈X,Z(f)Y 〉+ 〈Z,X(f)Y 〉)

= f〈∇XY, Z〉+ 〈X(f)Y,Z〉.
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Thus ∇ defines a connection on Mn. Finally, equation 2.3 yields

〈∇XY,Z〉+ 〈∇XZ, Y 〉

=
1

2
(X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉 − 〈X, [Y,Z]〉+ 〈Y, [Z,X]〉+ 〈Z, [X,Y ]〉)

+
1

2
(X〈Z, Y 〉+ Z〈Y,X〉 − Y 〈X,Z〉 − 〈X, [Z, Y ]〉+ 〈Z, [Y,X]〉+ 〈Y, [X,Z]〉)

= X〈Y,Z〉

and

〈∇XY,Z〉 − 〈∇YX,Z〉

=
1

2
(X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉 − 〈X, [Y,Z]〉+ 〈Y, [Z,X]〉+ 〈Z, [X,Y ]〉)

− 1

2
(Y 〈X,Z〉+X〈Z, Y 〉 − Z〈Y,X〉 − 〈Y, [X,Z]〉+ 〈X, [Z, Y ]〉+ 〈Z, [Y,X]〉)

= 〈[X,Y ], Z〉,

therefore, ∇ is a metric and torsion free connection.

It remains to show the formula for the coefficients ωijk. For this case, we consider a patch

U , the k-th coordinate curve xk and vector fields X,Y ∈ V(Mn). Along this curve,

∂

∂xk
〈X,Y 〉 =

∂

∂xk
〈∂iXi, ∂jY

j〉 =
∂

∂xk
(gijX

iY j) =
∂gij
∂xk

XiY j + gij
∂Xi

∂xk
Y j + gijX

i∂Y
j

∂xk

and

〈∇∂kX,Y 〉+ 〈X,∇∂kY 〉
= 〈∇∂k∂iX

i, ∂jY
j〉+ 〈∂iXi,∇∂k∂jY

j〉

=

〈
∂Xi

∂xk
∂i +Xi∇∂k∂i, ∂jY

j

〉
+

〈
∂iX

i,
∂Y j

∂xk
∂j + Y j∇∂k∂j

〉
= 〈∂i, ∂j〉

∂Xi

∂xk
Y j + 〈∂lωlki, ∂j〉XiY j + 〈∂i, ∂j〉Xi∂Y

j

∂xk
+ 〈∂i, ∂lωlkj〉XiY j

= gij
∂Xi

∂xk
Y j + gljω

l
kiX

iY j + gijX
i∂Y

j

∂xk
+ gilω

l
kjX

iY j .

Since ∇ is metric, we have
∂gij
∂xk

= gljω
l
ki + gilω

l
kj .

Moreover, we know that ωijk = ωikj for all i, j, k ∈ {1, ..., n} since ∇ is torsion free. Now, we

find

∂glj
∂xk

+
∂gkl
∂xj
−
∂gjk
∂xl

= gijω
i
kl + gliω

i
kj + gilω

i
jk + gkiω

i
jl − gikωilj − gjiωilk = 2gliω

i
jk,

which finally gives

ωijk =
1

2
gli
(
∂glj
∂xk

+
∂gkl
∂xj
−
∂gjk
∂xl

)
and finishes the proof.
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Definition 2.21. The connection ∇ characterized in Theorem 2.20 is called the Levi-Civita

connection and its coefficients, from now on denoted by Γijk, are called the Christoffel symbols.

Definition 2.22. Let Mn be a Riemannian manifold with metric 〈·, ·〉 and C a curve in Mn.

A variation of the curve C is a twice continuously differentiable map

x :

{
[0, L]× (−1, 1) →Mn,

(s, α) 7→ x(s, α),

where x(s, 0) is the parametrization of C and L the length of C; moreover, we demand that s

is the arc length parameter for C.

We define the arc length functional

L(α) :=

∫ L

0

〈
∂x(s, α)

∂s
,
∂x(s, α)

∂s

〉 1
2

ds,

which is the length of the curve x(·, α).

Proposition 2.23. Let Mn be a Riemannian manifold with metric 〈·, ·〉, ∇ the Levi-civita

connection, C be a geodesic in Mn and x(s, α) be a variation of C such that x(0, α) = x(0, 0)

and x(1, α) = x(1, 0) for all α ∈ (−1, 1). Then

L′(0) = 0.

In other words, a geodesic is a critical point of the arc length functional for variations which

keep the endpoints fixed.

Proof. Let x(s, α) be a variation of a geodesic C in Mn such that x(0, α) = x(0, 0) and

x(1, α) = x(1, 0) for all α ∈ (−1, 1). At first, ∇ is a metric connection and Lemma 2.19 yields

∂

∂α

〈
∂x

∂s
,
∂x

∂s

〉
= 2

〈
∇
∂α

(
∂x

∂s

)
,
∂x

∂s

〉
and

∂

∂s

〈
∂x

∂α
,
∂x

∂s

〉
=

〈
∇
∂s

(
∂x

∂α

)
,
∂x

∂s

〉
+

〈
∂x

∂α
,
∇
∂s

(
∂x

∂s

)〉
.

In addition, ∇ is torsion free, hence,

∇
∂α

(
∂x

∂s

)
=
∇
∂s

(
∂x

∂α

)
due to Lemma 2.18. Together, we deduce

L′(α) =
1

2

∫ L

0

〈
∂x

∂s
,
∂x

∂s

〉− 1
2 ∂

∂α

〈
∂x

∂s
,
∂x

∂s

〉
ds

=

∫ L

0

〈
∂x

∂s
,
∂x

∂s

〉− 1
2
〈
∇
∂α

(
∂x

∂s

)
,
∂x

∂s

〉
ds

=

∫ L

0

〈
∂x

∂s
,
∂x

∂s

〉− 1
2
〈
∇
∂s

(
∂x

∂α

)
,
∂x

∂s

〉
ds.
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Now, s is the arc length parameter for x(·, 0); consequently,

L′(0) =

∫ L

0

〈
∇
∂s

(
∂x

∂α

)
,
∂x

∂s

〉
=

∫ L

0

(
∂

∂s

〈
∂x

∂α
,
∂x

∂s

〉
−
〈
∂x

∂α
,
∇
∂s

(
∂x

∂s

)〉)
ds

=

〈
∂x

∂α
(1, 0),

∂x

∂s
(1, 0)

〉
−
〈
∂x

∂α
(0, 0),

∂x

∂s
(0, 0)

〉
−
∫ L

0

〈
∂x

∂α
,
∇
∂s

(
∂x

∂s

)〉
ds

= −
∫ L

0

〈
∂x

∂α
,∇TT

〉
ds

= 0

if T ∈ V(Mn) with T = ∂x(s, 0)/∂s along C denotes the tangent vector field along C.

2.1.3 Shape Spaces

Generally, a shape space is a set whose elements can be identified with geometrical objects,

like smooth surfaces, polgons and so on. This definition (or better characterization) includes

now a large variety of such shape spaces, which may be finite-dimensional as well as infinite-

dimensional.

In contrast to geodesics and parallel transport on manifolds, the concept of shape spaces is

a more recent topic of modern research, with a focus on theoretical issues (e.g. [6]) as well as

geometric applications (e.g. [4]). First, we will have a short look at different shape spaces and

the corresponding practical applicability for certain geometric problems. Finally, we introduce

some notations which will be used in the sequel, and we reformulate the geodesic equation and

the equation of parallel translation for practical reasons.

Some typical examples for infinite-dimensional shape spaces together with possible Rie-

mannian metrics are studied by P. Michor and D. Mumford in [6]. They consider, for example,

the set

S1 := Emb(S1,R2)/Diff(S1)

of the manifold of C∞ embeddings of S1 into R2 modulo the group of C∞ diffeomorphisms of

S1. For sure, one could also work just with S2 := Emb(S1,R2), but then there are different

elements in S2 which would be identified with the same object. Consider for example

i1 :

{
S1 ≡ [0, 2π] → R2,

φ 7→ (cos(φ), sin(φ))
and i2 :

{
S1 ≡ [0, 2π] → R2,

φ 7→ (sin(φ), cos(φ))

which are different elements in S2 but correspond to the same point set in R2, the unit circle. To

overcome this ambiguity, one usually has to deal with quotient spaces. In our example, i1 and i2
belong to the same coset in S1 since i1 and i2 are just two different parametrizations of the unit

circle in R2 – and such reparametrizations are identified with each other in S1. Furthermore,

the authors show that one may also consider the shape space S3 of all unparametrized C∞

simple closed curves in R2; more precisely, they claim

S3 ∼= Emb(S1,R2)/Diff(S1).
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In contrast to the shape spaces described above, which are mainly of theoretical interest, let

us now consider some finite-dimensional shape spaces. In [4], M. Kilian et al. study geometric

modeling tasks, such as shape morphing and deformation transfer, using the shape space S4
of triangular meshes in R3 with a fixed connectivity graph and a given number of nodes.

Clearly, S4 can be identified with R3N where N denotes the number of nodes. Recall that the

connectivity graph of a mesh in R3 is the graph which describes the neighbourhood relations of

the nodes. The task is then to equip S4 with a useful Riemannian metric, which is in general

different from the Euclidean inner product in R3N . The choice of the metric depends on the

problem and the desired result. If a shape, i.e. a triangular mesh, should be deformed into a

certain way but preserve all the pairwise distances between two points, then one will look for

a Riemannian metric which strongly penalizes non-rigid deformations. In detail, the metric

should yield a geodesic in S4, which consists of shapes being as-rigid-as-possible transformed.

In a similar way, they introduce an as-isometric-as-possible metric

〈X,Y 〉I :=
∑
(p,q)

〈Xp −Xq, p− q〉〈Yp − Yq, p− q〉

on S4. Here, M ∈ S4, X,Y ∈ TMS4 and 〈·, ·〉 denotes the Euclidean inner product in R3;

moreover, the sum is taken over all edges (p, q) of the mesh M . Per definition, a deformation

of a surface is isometric if and only if the distances measured on the surface are preserved during

the deformation. For triangular meshes this is equivalent to the fact that the length of each edge

remains constant. If there are no isometric deformations except translations and rotations, we

have to deal with deformations being as-isometric-as-possible. And exactly these deformations

yield shorter distances in S4, if one uses this metric. Consequently, the resulting geodesic

joins shapes in S4 which are as-isometric-as-possible transformed; see [4] for further details.

However, the as-rigid-as-possible and the as-isometric-as-possible metric are only Riemannian

pseudo-metrics, since a rigid body motion, respectively an isometric deformation, has norm

zero. To obtain a Riemannian metric, one may add a small regularization term like a multiple

of an L2-type metric

〈X,Y 〉L2
:=
∑
p∈M

wp〈Xp, Yp〉

where wp denotes the area of the triangles adjacent to p. This is done in [4] and the result,

which is obviously a Riemannian metric, then reads

〈X,Y 〉Iλ := 〈X,Y 〉I + λ〈X,Y 〉L2

where λ ∈ R>0.

Furthermore, one could also consider the shape space S5 of all quad meshes with a fixed

connectivity graph and a given number of nodes. But S5 is in some sense very similar to

S4, since the only difference is the changed connectivity. Hence, the essential ingredients for

a shape space of meshes (with a finite number of nodes) is the connectivity graph and the

number of nodes, which are both the same for all meshes.

For our studies on shape optimization in the context of Riemannian geometry, we shall

always consider the shape space S of triangulated meshes embedded in R3 with a fixed con-

nectivity graph and a given number of nodes N . These surfaces may be either the boundary
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∂Ω of a subset Ω ⊂ R3 with finite volume, or the graph of a function from R2 into R. For a

shape M ∈ S we will use P ⊂ R3 to denote the set of all nodes of M . For sure, M and P refer

to the same object, the triangular mesh, but from different perspectives; on the one hand, M

describes the mesh as an element in an abstract shape space, whereas P characterizes the mesh

as a finite subset of R3. We also use the notation N (p) for the set containing p and all nodes

of M which share a common edge with p, and T (p) for the set of all triangles of M which have

p as a vertex. Moreover, we define C ⊂ P 2 as the set of all (p, q) ∈ P 2 which are neighbouring

points.

We explained above that S can be identified with R3N . But depending on the problem,

one will use special Riemannian metrics to endow the shape space S with a certain geometry.

Subsequently, we will also introduce Riemannian metrics on S which are different from the

Euclidean inner product in R3N . Strictly speaking, these metrics have to be defined on each

tangent space TMS for M ∈ S; this will be done in the next section.

However, we will restrict our admissible deformations of a triangular mesh to those which

are normal to the surface, in detail, every node p ∈ P may only be moved along the local

surface normal vector np ∈ R3 . Consequently, our deformation fields are given by

(Xp)p∈P = (κpnp)p∈P ∈ TMS (2.5)

with κp ∈ R. Since a deformation of a mesh M ∈ S is a curve in S, we only consider curves

in S whose tangent vectors are given by (2.5). Hence, we do not consider all possible tangent

vectors in the 3N -dimensional tangent space TMS but only those described ones, which are

contained in an N -dimensional subspace of TMS. Therefore, all the admissible deformations

of a surface M ∈ S are uniquely determined by the vector ~κ := (κp)p∈P ∈ RN . Now, we have

to define properly the normal vector np ∈ R3 of a triangulated mesh at a vertex p ∈ P . We

decide to define it the following way:

np :=

∥∥∥∥∥ ∑
t∈T (p)

(t2 − p)× (t3 − p)

∥∥∥∥∥
−1 ∑

t∈T (p)

(t2 − p)× (t3 − p) (2.6)

where the vertices of all triangles in the mesh M are indexed in the same counterclockwise

orientation, p = t1 for all t ∈ T (p) and ‖ · ‖ denotes the Euclidean norm in R3. Note that (2.6)

is a weighted average of the normal vectors to the triangles adjacent to p. In detail, the normal

vectors of those triangles are more involved, whose area is large. This is the case, because we

first sum over all normal vectors around p and then normalize the resulting vector. However,

we could also have taken the sum of all normalized normal vectors and then normalize again

but this would require more computational effort and ignore the area of the triangles around p.

Below, we will often use the notation ~~n := (np)p∈P ∈ R3N for the concatenation of all normal

vectors np with p ∈ P .

Let us now formulate the geodesic equation within this setting. For this case, we assume to

have a Riemannian metric on the shape space S; then, due to Theorem 2.20, we may consider

the Levi-Civita connection ∇ with its coefficients Γγαβ – the Christoffel symbols. Now, from

Proposition 2.13, we see that we can easily reduce the geodesic equation to the following system
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of first order differential equations: {
u̇γ = T γ ,

Ṫ γ = −ΓγαβT
αT β,

where (uγ)γ∈{1,...,3N} = (p)p∈P is just a different notation for the concatenation of all nodes

p ∈ P to a vector in R3N . Since we only allow deformations along the local surface normals,

we also have ṗ = κpnp ∈ R3 and, hence, ~T = ~κ · ~~n ∈ R3N where · stands for the scalar

multiplication of the corresponding entries of ~κ and ~~n. In a similar way, one may rewrite the

equation of parallel transport from Proposition 2.13 as

Ẋγ = −ΓγαβX
αT β

where ~X is the parallel translate of an initial vector ~X0, tangent to the shape space S, along a

geodesic u with tangent vector ~T . Again, we are only interested in tangent vectors ~X which are

locally given by Xp = λpnp and, therefore, read ~X = ~λ · ~~n ∈ R3N . However, it is not clear up

to now that the geodesic equation or the equation of parallel translation admits solutions, for

which ~T = ~κ · ~~n, respectively ~X = ~λ · ~~n holds. For sure, we know from the Theorem of Picard

and Lindelöf, that both differential equations have unique solutions at least within a sufficiently

small time interval I. But we do not know whether this solution is in these N -dimensional

subspaces of TM(t)S for all t ∈ I provided this is true for the initial data. Nevertheless, we

shall see in the next sections that we are able to show the unique existence of such solutions

via deducing an explicit formula for κ̇, respectively λ̇. This works at least for those metrics

which we consider, if we accept a slight approximation at some point.

2.2 Riemannian Metrics

We now introduce some Riemannian metrics on the tangent space TMS to the space of trian-

gular meshes S in some shape M ∈ S. We start with the definition of the metric and deduce

the inner product of two canonical basis vectors of R3N .

Let us begin with the Euclidean metric

〈X,Y 〉Eu :=
∑
p∈P
〈xp, yp〉

where X = (xp)p∈P , Y = (yp)p∈P ∈ TMS with xp, yp ∈ R3. So far, the metric is defined on the

whole tangent space at M ∈ S. Specifically for N1 = (κpnp)p∈P , N2 = (λpnp)p∈P ∈ TMS we

obtain

〈N1, N2〉Eu =
∑
p∈P

κpλp.

Obviously, this is a very simple metric for vectors which consist of local normal vectors. Let

now eip ∈ R3N be the vector having zeros in all entries except in the i-th component of the part

corresponding to p ∈M . Then, one immediately sees from the definition of the metric that

〈eip, ejq〉Eu = δpqδij
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where δ.,. denotes the Kronecker-Delta. In addition, it is obvious that 〈·, ·〉Eu actually defines

a Riemannian metric (not only a pseudo metric) on the shape space S and, consequently, no

regularization is necessary.

Another possible Riemannian metric on the shape space S is the Hn-type metric

〈X,Y 〉Hn

0 :=
∑

(p,q)∈C

〈
xp − xq
‖p− q‖n

, p− q
〉〈

yp − yq
‖p− q‖n

, p− q
〉

for n ∈ N, X = (xp)p∈P , Y = (yp)p∈P ∈ TMS and vectors xp, yp ∈ R3. We shall emphasize

that the notation is motivated by Hölder type estimates, and not by Sobolev spaces. Since

the right-hand-side only defines a Riemannian pseudo-metric, we write 〈·, ·〉Hn

0 and define the

Hn-metric via the following regularization of 〈·, ·〉Hn

0 with ρ ∈ R>0:

〈X,Y 〉Hn
:=

∑
(p,q)∈C

〈
xp − xq
‖p− q‖n

, p− q
〉〈

yp − yq
‖p− q‖n

, p− q
〉

+ ρ
∑
p∈P
〈xp, yp〉.

A special case in this general definition is n = 0; this is the so-called as-isometric-as-possible

metric, which has already been discussed in subsection 2.1.3. However, the idea behind the

Hn-metric is to adopt the as-isometric-as-possible metric in such a way that small distances

between two points, and therefore also nearly singular triangles, are penalized more. But

although this inner product is able to prevent the local contraction of several points to one

point, it is still possible that self-intersections of the surface occur in the process of deforming.

This is not surprisung since the metric only takes the distances from one point to each of its

neighbours into account and two not neighbouring points may still become arbitrary close to

each other. Now, we are interested in deformations of a shape along its local surface normals,

hence, we also state the special form of the metric

〈N1, N2〉H
n

=
∑

(p,q)∈C

〈
κpnp − κqnq
‖p− q‖n

, p− q
〉〈

λpnp − λqnq
‖p− q‖n

, p− q
〉

+ ρ
∑
p∈P

κpλp

with N1 = (κpnp)p∈P , N2 = (λpnp)p∈P ∈ TMS and np the local surface normal at the point

p ∈M . To obtain the inner product of two canonical basis vectors eip, e
j
q ∈ R3N with p, q ∈M

and i ∈ {1, 2, 3}, we have to distinguish whether the two vectors have their non-zero entry at

the same point p or at different points p and q. From the definition of the Hn-metric, it is

clear that 〈eip, e
j
q〉H

n
= 0 if p and q are not neighbouring points. Thus, the two cases q = p and

q ∈ N (p)\{p} remain, where N (p) is the set of neighbouring points of p. The result directly

follows from the definition and is given by〈
eip, e

j
p

〉Hn

= ρδij +
∑

q∈N (p)\{p}

(pi − qi)(pj − qj)
‖p− q‖2n

and 〈
eip, e

j
q

〉Hn

= −(pi − qi)(pj − qj)
‖p− q‖2n

for q ∈ N (p)\{p}.

For our purposes the Riemannian metrics introduced above are sufficient, since we will also

have a closer look at the differences between these metrics in applications.
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2.3 Geodesic Equations

Now, we will establish the systems of geodesic equations which correspond to the above metrics.

For this reason, we manipulate the generic geodesic equation in such a way to get rid of the

Christoffel symbols, but we will see that for the Hn-metric we have to make an approximation

at a certain point. Consequently, the resulting approximate geodesic equation is quite cheap

to evalute but, in general, it is not exact any more.

We start with a triangular mesh M ∈ S which has N nodes in R3; the collection of these

nodes is denoted with P ⊂ R3. In subsection 2.1.3 we stated{
u̇γ = T γ ,

Ṫ γ = −ΓγαβT
αT β,

where M is characterized with a vector u ∈ R3N . In addition,

~T = ~κ · ~~n ∈ R3N and ~̇T = ~̇κ · ~~n+ ~κ · ~̇~n ∈ R3N

where ~κ ∈ RN , ~~n ∈ R3N and · stands for the scalar multiplication of the corresponding entries

of ~κ and ~~n. The aim of this section is to derive a formula for each κ̇p with p ∈ P using the

system of geodesic equations.

Independent from the chosen metric, we can do the following calculation. Let 〈·, ·〉S denote

one of the Riemannian metrics on S defined above and

ñp :=
(
0TR3 , ..., 0

T
R3 , n

T
p , 0

T
R3 , ..., 0

T
R3

)T ∈ R3N

be a vector with all entries zero except at those components which correspond to the point

p ∈ P . Then we get〈
~̇κ · ~~n+ ~κ · ~̇~n, ñp

〉S
=

〈
−eγΓγαβT

αT β, ñp

〉S
=
〈
−eγΓγαβT

αT β, eδñ
δ
p

〉S
= −〈eγ , eδ〉SΓγαβT

αT βñδp = −ΓγαβgγδT
αT βñδp

= −1

2

(
∂gδα
∂uβ

+
∂gβδ
∂uα

−
∂gαβ
∂uδ

)
TαT βñδp

= −1

2

3∑
k=1

nkp
∑

q,r∈N (p)

3∑
l,m=1

T lqT
m
r

(
∂〈ekp, elq〉
∂rm

+
∂〈emr , ekp〉
∂ql

−
∂〈elq, emr 〉
∂pk

)
︸ ︷︷ ︸

=: A

where the last equality holds true since both metrics, 〈·, ·〉Eu and 〈·, ·〉Hn
are local in the sense

that they satisfy 〈eis, e
j
t 〉 = 0 for all i, j ∈ {1, 2, 3} if s, t ∈ P are not neighbouring points. The

task is now to calculate A = A(p, q, r, k, l,m) for the different Riemannian metrics.

At first, we consider the metric 〈·, ·〉Eu. In this case, A = 0 since 〈eip, e
j
q〉Eu = δpqδij is a

constant independent of the coordinates of p and q. Moreover,〈
~̇κ · ~~n+ ~κ · ~̇~n, ñp

〉Eu
= κ̇p〈np, np〉+ κp〈ṅp, np〉 = κ̇p
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and therefore, the system of geodesic equations for the metric 〈·, ·〉Eu reads

{
ṗ = κpnp,

κ̇p = 0,
(2.7)

for all p ∈ P . This pair of equations describes the deformation of a surface along its local

normal vectors where κ, the speed of the deformation, remains constant.

Next, we come to the more elaborate calculation of A for the Hn-metric. For this reason,

we distinguish four cases where the calculations are quite trivial but, nevertheless, require some

concentration. So let p ∈ P , q, r ∈ N (p) and k, l,m ∈ {1, 2, 3}.

Case 1: q = p ∧ r = p:

A = δkm
∑

s∈N (p)\{p}

pl − sl

‖p− s‖2n
+ δlm

pk − sk

‖p− s‖2n
− 2n

(pk − sk)(pl − sl)(pm − sm)

‖p− s‖2n+2
+

δml
∑

s∈N (p)\{p}

pk − sk

‖p− s‖2n
+ δkl

pm − sm

‖p− s‖2n
− 2n

(pm − sm)(pk − sk)(pl − sl)
‖p− s‖2n+2

−

δlk
∑

s∈N (p)\{p}

pm − sm

‖p− s‖2n
− δmk

pl − sl

‖p− s‖2n
+ 2n

(pl − sl)(pm − sm)(pk − sk)
‖p− s‖2n+2

= 2
∑

s∈N (p)\{p}

(
δlm

pk − sk

‖p− s‖2n
− n(pk − sk)(pl − sl)(pm − sm)

‖p− s‖2n+2

)
.

Case 2: q = p ∧ r 6= p:

A = −δkm
pl − rl

‖p− r‖2n
− δlm

pk − rk

‖p− r‖2n
+ 2n

(pk − rk)(pl − rl)(pm − rm)

‖p− r‖2n+2
−

δkl
pm − rm

‖p− r‖2n
− δml

pk − rk

‖p− r‖2n
+ 2n

(pk − rk)(pm − rm)(pl − rl)
‖p− r‖2n+2

+

δlk
pm − rm

‖p− r‖2n
+ δmk

pl − rl

‖p− r‖2n
− 2n

(pl − rl)(pm − rm)(pk − rk)
‖p− r‖2n+2

= −2

(
δlm

pk − rk

‖p− r‖2n
− n(pk − rk)(pl − rl)(pm − rm)

‖p− r‖2n+2

)
.
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Case 3: q 6= p ∧ r = p:

A = −δkm
pl − ql

‖p− q‖2n
− δlm

pk − qk

‖p− q‖2n
+ 2n

(pk − qk)(pl − ql)(pm − qm)

‖p− q‖2n+2
−

δkl
pm − qm

‖p− q‖2n
− δml

pk − qk

‖p− q‖2n
+ 2n

(pk − qk)(pm − qm)(pl − ql)
‖p− q‖2n+2

+

δmk
pl − ql

‖p− q‖2n
+ δlk

pm − qm

‖p− q‖2n
− 2n

(pm − qm)(pl − ql)(pk − qk)
‖p− q‖2n+2

= −2

(
δlm

pk − qk

‖p− q‖2n
− n(pk − qk)(pl − ql)(pm − qm)

‖p− q‖2n+2

)
.

Case 4: q 6= p ∧ r 6= p: Now we consider the following two cases.

Case 4.1: q = r:

A = δkm
pl − ql

‖p− q‖2n
+ δlm

pk − qk

‖p− q‖2n
− 2n

(pk − qk)(pl − ql)(pm − qm)

‖p− q‖2n+2
+

δkl
pm − qm

‖p− q‖2n
+ δml

pk − qk

‖p− q‖2n
− 2n

(pk − qk)(pm − qm)(pl − ql)
‖p− q‖2n+2

−

δlk
pm − qm

‖p− q‖2n
− δmk

pl − ql

‖p− q‖2n
+ 2n

(pl − ql)(pm − qm)(pk − qk)
‖p− q‖2n+2

= 2

(
δlm

pk − qk

‖p− q‖2n
− n(pk − qk)(pl − ql)(pm − qm)

‖p− q‖2n+2

)
.

Case 4.2: q 6= r:

A = 0 + 0− 0 = 0.
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Now, we use these expressions for A and find

−1

2

3∑
k=1

nkp
∑

q,r∈N (p)

3∑
l,m=1

T lqT
m
r A(p, q, r, k, l,m)

= −
3∑

k,l=1

nkp
∑

s∈N (p)\{p}

(
T lpT

l
p

pk − sk

‖p− s‖2n
− n

3∑
m=1

T lpT
m
p

(pk − sk)(pl − sl)(pm − sm)

‖p− s‖2n+2

)
+

3∑
k,l=1

nkp
∑

r∈N (p)\{p}

(
T lpT

l
r

pk − rk

‖p− r‖2n
− n

3∑
m=1

T lpT
m
r

(pk − rk)(pl − rl)(pm − rm)

‖p− r‖2n+2

)
+

3∑
k,l=1

nkp
∑

q∈N (p)\{p}

(
T lqT

l
p

pk − qk

‖p− q‖2n
− n

3∑
m=1

T lqT
m
p

(pk − qk)(pl − ql)(pm − qm)

‖p− q‖2n+2

)
−

3∑
k,l=1

nkp
∑

q∈N (p)\{p}

(
T lqT

l
q

pk − qk

‖p− q‖2n
− n

3∑
m=1

T lqT
m
q

(pk − qk)(pl − ql)(pm − qm)

‖p− q‖2n+2

)

=

3∑
k,l=1

nkp
∑

q∈N (p)\{p}

pk − qk

‖p− q‖2n

(
−
(
T lp

)2
+ 2T lpT

l
q −

(
T lq

)2
+

n
pl − ql

‖p− q‖2
3∑

m=1

(pm − qm)
(
T lpT

m
p − T lpTmq + T lqT

m
q − T lqTmp

))

=

3∑
k=1

nkp
∑

q∈N (p)\{p}

pk − qk

‖p− q‖2n

(
3∑
l=1

−
(
T lp − T lq

)2
+

n

3∑
l=1

pl − ql

‖p− q‖2
3∑

m=1

(pm − qm)
(
T lp − T lq

) (
Tmp − Tmq

))

=

3∑
k=1

nkp
∑

q∈N (p)\{p}

pk − qk

‖p− q‖2n

(
−‖Tp − Tq‖2 + n

〈p− q, Tp − Tq〉2

‖p− q‖2

)

=

〈
np,

∑
q∈N (p)\{p}

p− q
‖p− q‖2n

(
n
〈p− q, Tp − Tq〉2

‖p− q‖2
− ‖Tp − Tq‖2

)〉

where 〈·, ·〉 denotes the Euclidean inner product in R3. The last step to obtain the geodesic

equations in the shape space S for the Hn-metric is to manipulate the left-hand-side of the

equation

〈
~̇κ · ~~n+ ~κ · ~̇~n, ñp

〉Hn

=

〈
np,

∑
q∈N (p)\{p}

p− q
‖p− q‖2n

(
n
〈p− q, Tp − Tq〉2

‖p− q‖2
− ‖Tp − Tq‖2

)〉

in such a way to get an explicit formula for κ̇p. But to achieve this we have to make an
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approximation at some point.〈
~̇κ · ~~n+ ~κ · ~̇~n, ñp

〉Hn

=

〈∑
q∈P

3∑
i=1

(
κ̇qn

i
q + κqṅ

i
q

)
eiq,

3∑
j=1

njpe
j
p

〉Hn

=
∑
q∈P

3∑
i,j=1

(
κ̇qn

i
q + κqṅ

i
q

)
njp
〈
eiq, e

j
p

〉Hn

=
3∑

i,j=1

(
κ̇pn

i
p + κpṅ

i
p

)
njp

ρδij +
∑

q∈N (p)\{p}

(pi − qi)(pj − qj)
‖p− q‖2n

−
∑

q∈N (p)\{p}

3∑
i,j=1

(
κ̇qn

i
q + κqṅ

i
q

)
njp

(pi − qi)(pj − qj)
‖p− q‖2n

= ρ (κ̇p〈np, np〉+ κp〈ṅp, np〉) + κ̇p
∑

q∈N (p)\{p}

1

‖p− q‖2n
3∑

i,j=1

nipn
j
p(p

i − qi)(pj − qj) +

κp
∑

q∈N (p)\{p}

1

‖p− q‖2n
3∑

i,j=1

ṅipn
j
p(p

i − qi)(pj − qj)−

∑
q∈N (p)\{p}

κ̇q
‖p− q‖2n

3∑
i,j=1

niqn
j
p(p

i − qi)(pj − qj)−

∑
q∈N (p)\{p}

κq
‖p− q‖2n

3∑
i,j=1

ṅiqn
j
p(p

i − qi)(pj − qj)

In order to get rid of the κ̇q, we do the following approximation:

κ̇q ≈ κ̇p for all q ∈ N (p)\{p}. (2.8)

Otherwise, we had to solve a band-structured linear system for ~̇κ provided the system admits

a unique solution; but this might not be the case. However, we use a lumping method and

concentrate all coefficients of the system on its main diagonal. If we use that np is normalized

and consequently 〈np, np〉 = 1 and 〈ṅp, np〉 = 0 for all p ∈ P , we can further simplify the above

expressions to find〈
~̇κ · ~~n+ ~κ · ~̇~n, ñp

〉Hn

= ρκ̇p + κ̇p
∑

q∈N (p)\{p}

1

‖p− q‖2n
3∑

i,j=1

(nip − niq)njp(pi − qi)(pj − qj) +

∑
q∈N (p)\{p}

1

‖p− q‖2n
3∑

i,j=1

(κpṅ
i
p − κqṅiq)njp(pi − qi)(pj − qj)

= ρκ̇p + κ̇p
∑

q∈N (p)\{p}

1

‖p− q‖2n
〈np − nq, p− q〉〈np, p− q〉+

∑
q∈N (p)\{p}

1

‖p− q‖2n
〈κpṅp − κqṅq, p− q〉〈np, p− q〉.
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Now, we deduce

κ̇p

ρ+

〈
np,

∑
q∈N (p)\{p}

p− q
‖p− q‖2n

〈np − nq, p− q〉

〉 =

〈
np,

∑
q∈N (p)\{p}

p− q
‖p− q‖2n

(
n
〈p− q, Tp − Tq〉2

‖p− q‖2
− 〈κpṅp − κqṅq, p− q〉 − ‖Tp − Tq‖2

)〉

and in the case that the left-hand-side is not zero – which is the case if ρ ∈ R>0 is sufficiently

large – we have

κ̇p =

〈
np,

∑
q∈N (p)\{p}

p−q
‖p−q‖2n

(
n
〈p−q,Tp−Tq〉2
‖p−q‖2 − 〈κpṅp − κqṅq, p− q〉 − ‖Tp − Tq‖2

)〉

ρ+

〈
np,

∑
q∈N (p)\{p}

p−q
‖p−q‖2n 〈np − nq, p− q〉

〉 .

Finally, we are able to state the system of (approximate) geodesic equations in the shape space

S for the Hn-metric, which is given by


ṗ = κpnp,

κ̇p =

〈
np,

∑
q∈N (p)\{p}

p−q

‖p−q‖2n

(
n
〈p−q,Tp−Tq〉2

‖p−q‖2
−〈κpṅp−κqṅq ,p−q〉−‖Tp−Tq‖2

)〉

ρ+

〈
np,

∑
q∈N (p)\{p}

p−q

‖p−q‖2n
〈np−nq ,p−q〉

〉 (2.9)

for all p ∈ P .

2.4 Equations of Parallel Transport

The next task is to derive an explicit representation of the equations of parallel translation.

For this case, let u(t) be a geodesic in the shape space S, T (t) be the field of tangent vectors

to the geodesic, M ∈ S a triangular mesh with N nodes and P ⊂ R3 the set of all nodes of

M . Then we know from subsection 2.1.3 that

Ẋγ = −ΓγαβX
αT β

defines the parallel translate X along the geodesic u of an initial vector X0 tangent to S. Here,
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~T = ~κ · ~~n ∈ R3N ,

~X = ~λ · ~~n ∈ R3N and ~̇X = ~̇λ · ~~n+ ~λ · ~̇~n ∈ R3N

where ~κ,~λ ∈ RN and ~~n ∈ R3N . Again, · stands for the scalar multiplication of the corresponding

entries of ~κ respectively ~λ and ~~n. The following steps towards a formula for each λ̇p with p ∈ P
are at some points quite similar to the calculation of the geodesic equations, hence, we will

discuss analogous manipulations only briefly.

Let 〈·, ·〉S denote one of the Riemannian metrics on S defined above, and let

ñp :=
(
0TR3 , ..., 0

T
R3 , n

T
p , 0

T
R3 , ..., 0

T
R3

)T ∈ R3N

be a vector with nontrivial entries only at those components which correspond to the point

p ∈ P . Then one finds

〈
~̇λ · ~~n+ ~λ · ~̇~n, ñp

〉S
=

〈
−eγΓγαβX

αT β, ñp

〉S
=
〈
−eγΓγαβX

αT β, eδñ
δ
p

〉S
= −〈eγ , eδ〉SΓγαβX

αT βñδp = −ΓγαβgγδX
αT βñδp

= −1

2

(
∂gδα
∂uβ

+
∂gβδ
∂uα

−
∂gαβ
∂uδ

)
XαT βñδp

= −1

2

3∑
k=1

nkp
∑

q,r∈N (p)

3∑
l,m=1

X l
qT

m
r

(
∂〈ekp, elq〉
∂rm

+
∂〈emr , ekp〉
∂ql

−
∂〈elq, emr 〉
∂pk

)
︸ ︷︷ ︸

=: A

,

where A = A(p, q, r, k, l,m) has already been calculated for the metrics 〈·, ·〉Eu and 〈·, ·〉Hn
.

Since A = 0 for the metric 〈·, ·〉Eu, we immediately get the equation of parallel translation

for this metric,

λ̇p =
〈
~̇λ · ~~n+ ~λ · ~̇~n, ñp

〉Eu
= 0 (2.10)

for all p ∈ P . Consequently, λp(t) is constant for every p ∈ P and ~X(t) = ~λ ·~~n(t) only depends

on all the normal vectors np for p ∈ P .

For the Hn-metric, we proceed along the same lines as for the geodesic equations, which
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results in

−1

2

3∑
k=1

nkp
∑

q,r∈N (p)

3∑
l,m=1

X l
qT

m
r A(p, q, r, k, l,m)

= −
3∑

k,l=1

nkp
∑

s∈N (p)\{p}

(
X l
pT

l
p

pk − sk

‖p− s‖2n
− n

3∑
m=1

X l
pT

m
p

(pk − sk)(pl − sl)(pm − sm)

‖p− s‖2n+2

)
+

3∑
k,l=1

nkp
∑

r∈N (p)\{p}

(
X l
pT

l
r

pk − rk

‖p− r‖2n
− n

3∑
m=1

X l
pT

m
r

(pk − rk)(pl − rl)(pm − rm)

‖p− r‖2n+2

)
+

3∑
k,l=1

nkp
∑

q∈N (p)\{p}

(
X l
qT

l
p

pk − qk

‖p− q‖2n
− n

3∑
m=1

X l
qT

m
p

(pk − qk)(pl − ql)(pm − qm)

‖p− q‖2n+2

)
−

3∑
k,l=1

nkp
∑

q∈N (p)\{p}

(
X l
qT

l
q

pk − qk

‖p− q‖2n
− n

3∑
m=1

X l
qT

m
q

(pk − qk)(pl − ql)(pm − qm)

‖p− q‖2n+2

)

=

3∑
k,l=1

nkp
∑

q∈N (p)\{p}

pk − qk

‖p− q‖2n

(
−
(
X l
p −X l

q

)(
T lp − T lq

)
+

n
pl − ql

‖p− q‖2
3∑

m=1

(pm − qm)
(
X l
p −X l

q

) (
Tmp − Tmq

))

=

3∑
k=1

nkp
∑

q∈N (p)\{p}

pk − qk

‖p− q‖2n

(
−〈Xp −Xq, Tp − Tq〉+ n

〈Xp −Xq, p− q〉〈Tp − Tq, p− q〉
‖p− q‖2

)

=

〈
np,

∑
q∈N (p)\{p}

p− q
‖p− q‖2n

(
n
〈Xp −Xq, p− q〉〈Tp − Tq, p− q〉

‖p− q‖2
− 〈Xp −Xq, Tp − Tq〉

)〉

where 〈·, ·〉 denotes the Euclidean inner product in R3. Similarly to the considerations above,

we have to isolate ~̇λ. We use the approximation from equation (2.8) and get

〈
~̇λ · ~~n+ ~λ · ~̇~n, ñp

〉Hn

= ρλ̇p + λ̇p
∑

q∈N (p)\{p}

1

‖p− q‖2n
〈np − nq, p− q〉〈np, p− q〉+

∑
q∈N (p)\{p}

1

‖p− q‖2n
〈λpṅp − λqṅq, p− q〉〈np, p− q〉.

Analogously, one finds
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λ̇p

ρ+

〈
np,

∑
q∈N (p)\{p}

p− q
‖p− q‖2n

〈np − nq, p− q〉

〉 =

〈
np,

∑
q∈N (p)\{p}

p− q
‖p− q‖2n(

n
〈Xp −Xq, p− q〉〈Tp − Tq, p− q〉

‖p− q‖2
− 〈λpṅp − λqṅq, p− q〉 − 〈Xp −Xq, Tp − Tq〉

)〉

and if ρ ∈ R>0 is large enough, we arrive at

λ̇p =

ρ+

〈
np,

∑
q∈N (p)\{p}

p− q
‖p− q‖2n

〈np − nq, p− q〉

〉−1〈np, ∑
q∈N (p)\{p}

p− q
‖p− q‖2n(

n
〈Xp −Xq, p− q〉〈Tp − Tq, p− q〉

‖p− q‖2
− 〈λpṅp − λqṅq, p− q〉 − 〈Xp −Xq, Tp − Tq〉

)〉
(2.11)

for all p ∈ P . All together, the parallel translate X(t) = ~λ(t) · ~~n(t) ∈ TM(t)S of a tangent

vector X0 = ~λ0 · ~~n(0) ∈ TMS along a geodesic u in the shape space S can be calculated from

~λ0 together with the above equations for ~̇λ(t).





Chapter 3

Application To Shape From Shading

The basic idea behind Shape From Shading (SFS) is the following: Given a shading image

of a surface, i.e. an image of the surface which is illuminated in a certain way, we want to

reconstruct this surface. Generally, the shading image is given as a gray level image and the

underlying surface is interpreted as the graph of a function F : D ⊂ R2 → R where D ⊂ R2

stands for the set where the shading values of the surface are prescribed. Moreover, we may

choose a coordinate system (x, y, z) of R3 such that the direction of the observer coincides with

the negative z-direction.

The first method to reconstruct the surface structure from a shading image was presented

by Horn in [2]. His idea is to determine several paths on the surface which start from a

set of points (x, y, F (x, y)) where F (x, y), Fx(x, y) and Fy(x, y) are given. These paths are

called characteristics. In order to get an impression of the resulting shape, one may calculate

various characteristics which are close enough to each other. In detail, Horn suggested to

choose a small curve around a local maximum or minimum of F ; this curve serves then as

the set of initial points for the characteristics. Around the extremal point the surface can be

approximated with a concave or convex parabola. Hence, we can calculate F (x, y), Fx(x, y)

and Fy(x, y) approximately, if we can estimate the curvature of the surface at the extremal

point. Finally, one arrives at a system of five ordinary differential equations for x, y, z, p and

q where z ≡ F (x, y), p ≡ Fx(x, y) and q ≡ Fy(x, y). However, it may happen that the resulting

characteristics are restricted to a certain region on the surface. Generally, these regions are

bounded by various types of edges, e.g. discontinuities of ∇F , view edges and shadow edges.

For further details see [2] and also [5].

Within the last decades further approaches have been proposed. An overview of these

methods and their applicabilities in diferent situations is given in [8]. The authors of this

paper divide these methods into four categories. The first one contains algorithms which

propagate the information about the surface from a set of points over the surface. Horn’s

approach described above is a special propagation method. The second category is made of

those algorithms which minimize a certain functional. Such a functional involves in general a

27
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Figure 3.1: The (negative) direction of the incident light l together with the normal vector np
at a point p on the surface M .

data-fit term and a certain regularization term. The following constraints, which may serve

as possible regularization terms, are often used in the minimization process. Such constraints

may enforce a smooth surface, or a surface for which Fxy = Fyx, or a surface whose shading

image has the same intensity gradients as the given shading image. Thirdly, there are some

algorithms which assume a certain local surface type. In this case, the reconstructed surface

is approximated with patches which have a prescribed geometrical shape. In [8], an algorithm

is presented which locally approximates the surface with spherical patches. Finally, the fourth

group of algorithms uses a linearization of the reflectance function

R :

{
D → [0, 1],

(x, y) 7→ R(Fx(x, y), Fy(x, y)),

which assigns to each pair (x, y) the shading value of a given shape at this point. Generally,

R is a nonlinear function with respect to Fx and Fy. However, such a linearization makes

sense only if the linear terms in the Taylor series expansion of R dominate. Otherwise, the

reconstructed surface might have an essentially different topography as the underlying surface.

3.1 Objective Functional and its Gradient

Here, we choose an approach to the SFS-problem where we formulate a useful functional and

minimize it with appropriate optimization techniques. This functional shall be defined in such

a way that it attains, for a given shading image, its minimizer at a shape which is as similar

as possible to that shape from which the shading image is taken. For sure, we also have to
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use some apriori-informations to choose appropriate parameters for the functional as well as

for the optimization process; such parameters may control, for example, the smoothness of the

resulting shape, the step length of one optimization step or the Riemannian metric which is

used in the shape space.

In the sequel, we assume to have a gray level shading image of the shape which we want

to reconstruct. In addition, we consider this shape as the graph of a function from a subset

D ⊂ R2 into R. Doing so, we choose a coordinate system (x, y, z) of R3 where the z-axis

is the direction of the observer. Furthermore, l ∈ R3 shall denote the negative direction of

the incident light; see Figure 3.1. In the last chapter we introduced the shape space S of

triangulated meshes with fixed connectivity and a given number of nodes N . Within this

shape space S we will now obtain a mesh M which fits to the given shading image. Let also

P denote the set of all nodes of M and (s∗p)p∈P be the collection of the given shading values

at the points p ∈ P . Moreover, we assume that the shading image is taken from a Lambertian

surface, i.e. that the shading value at the point p is given by the special reflectance function

R(p) =
〈
np, l

〉
.

Now let us define a functional f which assigns to a triangular mesh a non-negative real

number; this number should be small, if the shading image of the mesh approximately coincides

with the given one, and large otherwise. But f should also penalize meshes which are far away

from being smooth, hence, we will add a certain regularization term to the data-fit term. Since

S can be identified with R3N , we may define f : R3N → R≥0 via

f(P ) :=
1

2

∑
p∈P

(
〈np(P ), l〉 − s∗p

)2
+
α

2

∑
(p,q)∈C

‖np(P )− nq(P )‖2

with α ∈ R≥0. First of all, the data-fit term measures differences between the given and

the current shading image of the mesh M with nodes P . But the regularization term with

its weight α also takes the difference between two neighbouring normal vectors into account;

therefore, the functional f “prefers” meshes which are more smooth in the sense of mildly

varying normal vectors. In general, such a regularization is necessary since the given shading

image only determines the inner product 〈np, l〉 at every point p ∈ P but not np itself; thus,

without any regularization of f , the minimization algorithm might find a mesh which perfectly

fits to the given shading image but has many spurious edges, when compared to the original

shape. However, if α is chosen too large, then the minimization algorithm will not be able

to reconstruct an edge which actually appears in the original shape. But this is a well-known

problem within the context of inverse problems in general.

In order to minimize the function f using a sensitivity based optimization algorithm, we

need to calculate its gradient ∇f . Therefore, we have to find all the partial derivatives ∂np/∂r
k

for p, r ∈ P and k ∈ {1, 2, 3}. Let p ∈ P , then

np =

 ∑
t∈T (p)

(t2 − p)× (t3 − p)


︸ ︷︷ ︸

=: A

 ∑
s∈T (p)

∑
t∈T (p)

〈
(s2 − p)× (s3 − p), (t2 − p)× (t3 − p)

〉− 1
2

︸ ︷︷ ︸
=: B

.
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Let now r ∈ P and k ∈ {1, 2, 3}, then either p = r or p ∈ N (r)\{r} or p /∈ N (r). Above we

assumed that all triangles in the mesh M are indexed in the same counterclockwise orientation

and that p = t1 for all t ∈ T (p); then ti denotes the i-th vertex of the triangle t. Now we also

use the notation t(ti = r)j for the j-th vertex of that triangle t whose i-th vertex is r; it will

be clear from the context which triangle t is meant, so there will be no ambiguity.

Case 1: p = r:

∂np
∂rk

=

( ∑
t∈T (p)

−ek × (t3 − p)− (t2 − p)× ek

)
B

− AB3

2

( ∑
s∈T (p)

∑
t∈T (p)

〈
− ek × (s3 − p)− (s2 − p)× ek, (t2 − p)× (t3 − p)

〉

+
〈

(s2 − p)× (s3 − p),−ek × (t3 − p)− (t2 − p)× ek
〉)

=

(
ek ×

∑
t∈T (p)

(t2 − t3)

)
B

− AB3

〈
ek ×

∑
s∈T (p)

(s2 − s3),
∑
t∈T (p)

(t2 − p)× (t3 − p)

〉
.

Case 2: p ∈ N (r)\{r}:

∂np
∂rk

= ek ×
(
t(t2 = r)3 − t(t3 = r)2

)
B

− AB3

2

( ∑
t∈T (p)

〈
ek ×

(
s(s2 = r)3 − s(s3 = r)2

)
, (t2 − p)× (t3 − p)

〉

+
∑

s∈T (p)

〈
(s2 − p)× (s3 − p), ek ×

(
t(t2 = r)3 − t(t3 = r)2

)〉)

=

(
ek ×

(
t(t2 = r)3 − t(t3 = r)2

))
B

− AB3

〈
ek ×

(
s(s2 = r)3 − s(s3 = r)2

)
,
∑
t∈T (p)

(t2 − p)× (t3 − p)

〉
.

Case 3: p /∈ N (r):

∂np
∂rk

= 0.
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Now, we come to the calculation of ∂f/∂rk.

∂f

∂rk
=

∑
p∈P

(
〈np, l〉 − s∗p

)〈∂np
∂rk

, l

〉
+ α

∑
(p,q)∈C

〈
np − nq,

∂np
∂rk
− ∂nq
∂rk

〉

=
∑
p∈P

(
〈np, l〉 − s∗p

)〈∂np
∂rk

, l

〉
+ 2α

∑
(p,q)∈C

〈
np − nq,

∂np
∂rk

〉

=
∑
p∈P

(
〈np, l〉 − s∗p

)〈∂np
∂rk

, l

〉
+ α

∑
p∈P

∑
q∈N (p)\{p}

〈
np − nq,

∂np
∂rk

〉

=
∑
p∈P

〈(
〈np, l〉 − s∗p

)
l + α

∑
q∈N (p)\{p}

np − nq,
∂np
∂rk

〉

=
∑

p∈N (r)

〈(
〈np, l〉 − s∗p

)
l + α

∑
q∈N (p)\{p}

np − nq,
∂np
∂rk

〉
(3.1)

where we used that ∂np/∂r
k = 0 for p /∈ N (r). Besides, we employ for an explicit calculation

of ∂f/∂rk the formula for ∂np/∂r
k with p ∈ N (r) obtained above.

Now, we are interested in the optimal descent direction for the function f . Since we only

consider deformations of the mesh M along the local normal vectors, we look for a descent

direction given by (κrnr)r∈P . However, we have to be precise and explain in which sense the

descent direction shall be optimal. The usual gradient is for sure the optimal descent direction

in the shape space S with respect to the Euclidean metric 〈·, ·〉Eu – but in general not for other

Riemannian metrics. To obtain the optimal descent direction for a general Riemannian metric

〈·, ·〉S , we have to solve the following problem:min J ((κr)r∈P ) :=
∑
r∈P

3∑
k=1

∂f
∂rk

κrn
k
r ,

e ((κr)r∈P ) := 〈~κ · ~~n,~κ · ~~n〉S − 1 = 0

with J : RN → R and e : RN → R. The first order necessary optimality condition for this

problem reads

∇J ((κr)r∈P ) + λ∗∇e ((κr)r∈P ) = 0, e ((κr)r∈P ) = 0,

with λ∗ ∈ R, respectively,(
3∑

k=1

∂f

∂rk
nkr

)
r∈P

+ 2λ∗
(
〈~κ · ~~n, ñr〉S

)
r∈P

= 0, 〈~κ · ~~n,~κ · ~~n〉S = 1.

If we use the Euclidean metric 〈·, ·〉S = 〈·, ·〉Eu, then we have 〈~κ · ~~n, ñr〉Eu = κr, and

consequently (〈(
∂f

∂rk

)
k∈{1,2,3}

, nr

〉)
r∈P

+ 2λ∗(κr)r∈P = 0

for all r ∈ P . Moreover, the second order necessary optimality condition yields λ∗ ≥ 0. If

λ∗ = 0, then nr is orthogonal to (∂f/∂rk)k∈{1,2,3} for each r ∈ P . Hence, the directional
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derivative of f in the direction of each local normal vector is zero, and consequently, the

current mesh is a critical point of the function f . Otherwise, if λ∗ > 0, then

κr = − 1

2λ∗

〈(
∂f

∂rk

)
k∈{1,2,3}

, nr

〉
.

Since λ∗ is a constant, we may use the N -dimensional vector

(κr)r∈P =

(
−
〈(

∂f

∂rk

)
k∈{1,2,3}

, nr

〉)
r∈P

(3.2)

to characterize the optimal direction (κrnr)r∈P to deform the mesh M .

In the case that 〈·, ·〉S = 〈·, ·〉Hn
with n ∈ N, we use the approximation

κq ≈ κp for all q ∈ N (p)\{p}.

In the same way, we proceeded in sections 2.3 and 2.4 to simplify a band-structured linear

system for the variables κ̇p and to obtain an explicit - but approximate - solution. Here, we

follow the same lines and find

〈~κ · ~~n, ñr〉H
n

= κr

(
ρ+

〈
np,

∑
q∈N (p)\{p}

p− q
‖p− q‖2n

〈np − nq, p− q〉

〉)
.

Analogously to above, the second order necessary optimality condition implies λ∗ ≥ 0 provided

ρ ∈ R>0 is sufficiently large. Moreover, λ∗ > 0 unless the current mesh M is a critical point

of the function f . Therefore, the optimal direction for the Hn-metric to deform the mesh M

is determined by

(κr)r∈P =

(
−

(
ρ+

〈
np,

∑
q∈N (p)\{p}

p− q
‖p− q‖2n

〈np − nq, p− q〉

〉)−1
〈(

∂f

∂rk

)
k∈{1,2,3}

, nr

〉)
r∈P

(3.3)

which is the same vector as for the Euclidean metric but now every component is weighted

with a certain scalar.

Let us also explicitly rewrite the directional derivative of f in the direction of a local normal

vector nr for r ∈ P .〈(
∂f

∂rk

)
k∈{1,2,3}

, nr

〉
=

3∑
k=1

∑
p∈N (r)

〈(
〈np, l〉 − s∗p

)
l + α

∑
q∈N (p)\{p}

np − nq,
∂np
∂rk

〉
nkr

=
∑

p∈N (r)

〈(
〈np, l〉 − s∗p

)
l + α

∑
q∈N (p)\{p}

np − nq,
3∑

k=1

∂np
∂rk

nkr

〉
.

Generally, what remains to solve the Shape-From-Shading problem for a given gray level

shading image of a Lambertian shape M is to make an appropriate choice for each of the

subsequent points:
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� A Riemannian metric for the shape space S,

� in case an Hn-metric is used, a value for the regularization parameter ρ ∈ R>0,

� a value for the penalty parameter α ∈ R≥0,

� values for several parameters in the optimization algorithm.

The optimal choices depend, for sure, on the image, the information about the underlying

shape and the algorithm which is used; hence, we will collect and discuss appropriate choices

in section 3.3.

3.2 Optimization Algorithms

We concentrate our interest on two optimization methods in the shape space S of triangulated

meshes with fixed connectivity and N points. First, we consider the basic steepest descent

method, which can be implemented quite straight forward. Second, we study the nonlinear

conjugate gradient method using the Fletcher-Reeves scheme. The convergence of this method

in Riemannian manifolds has been analyzed in [7]. For these algorithms we need all the theo-

retical concepts introduced in the previous sections, for example, the calculation of geodesics

and parallel translates in Riemannian manifolds.

We use MATLAB to implement these optimization methods. In detail, we write two

MATLAB-functions which contain the steepest descent algorithm and the NCG-algorithm.

Moreover, we also use two functions which evaluate the right-hand-side of the geodesic equa-

tions and calculate the parallel translate of a tangent vector along a (discretized) curve in S.

These functions will be discussed in the following subsections. However, we also use several

functions which we need for technical reasons; these functions are the following ones. The func-

tion crossp returns the cross product of two three-dimensional vectors; shade interpolates the

value of the shading image at each point in the given domain. The functions n and n t calcu-

late the normal vector to a triangular mesh at a given point, and its derivative respectively; t

simply returns κpnp for given p ∈ P and ~κ. In addition, f and gradf evaluate the function f

and expression (3.2), respectively (3.3). innprod calculates the Riemannian inner product of

two tangent vectors, and findmin determines that point on a (discretized) curve in S where

f is minimal. Finally, the functions plotshape and savefig are used to plot a shape and to

generate the resulting image file.

3.2.1 Geodesic Steepest Descent Method

The idea of the geodesic steepest descent method in the shape space S is quite the same as

in the context of vector spaces. One starts the algorithm at some point x0 ∈ S and calculates

the direction v0 ∈ Tx0S of steepest descent of the objective function f . But now this direction

also depends on the Riemannian metric as we have seen in the previous section. Then, we may

consider the geodesic u through x0 with tangent vector v0 and employ a line search method to

minimize the function f along u. For this case, we calculate a given number of points yi along
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the geodesic u and evaluate f at exactly these points. We determine that point yi0 where f is

minimal; this gives us the next iterate x1 where the procedure is repeated. If we proceed like

this, all the points yi are used and no further computational effort is necessary to calculate

other intermediate points on the geodesic u.

The steepest descent method is implemented in the function steepestdesc; this function

requires several input parameter. box is a matrix in R2×2 with the lower left and upper right

corner of a rectangle in R2 which determines the x- and y-coordinates of the resulting shape.

tri is a matrix which contains for each triangle the indices of its vertices, and boundpts is

a vector whose entries are 1 if the corresponding node is at the boundary of the triangulated

mesh and 0 otherwise. This vector can be used to keep the boundary of a mesh fixed during the

optimization process. neibtri, neibpts and edge are matrices where each row corresponds

to a node and contains a vector of indices of neighbouring nodes; neibtri collects the indices

of the nodes of all adjacent triangles, neibpts the indices of all neighbouring nodes and edge

the indices of those neighbouring nodes whose index is larger than that of the current node.

Moreover, light defines the direction of the light source, shadepts contains the gray values

of the shading image, alpha is the penalty parameter in the function f , m defines the used

Hm-metric and regul the regularization parameter of this metric. Finally, u0 ∈ R3N denotes

the initial mesh, itereq the number of steps along a geodesic as described above, delta0 the

initial step length and maxit the maximal number of updates of the triangular mesh.

At the beginning, the function calculates the optimal descent direction for f using the

function gradf. Within the subsequent while-loops, the following steps are repeated. Firstly,

points on the geodesic starting at u in direction kappa are calculated, secondly, the minimum

of f along these points is determined, and thirdly, the new direction of steepest descent of f is

calculated. We know from Lemma 2.19 (with U = V = T the tangent vector to the geodesic

x) that 〈T, T 〉 is constant along the geodesic x for T = dx/dt. Here, we employ this result to

kappa, which represents the tangent vector T to the geodesic x. At line 26, we calculate the

norm nrm of the initial tangent vector; and after each step along the geodesic, we scale at line 33

the new tangent vector to have the length nrm. This correction makes the procedure of explicit

Euler-steps also more stable. Besides, we need the function equations which calculates the

change of all node positions u and of the vector kappa; we will describe this function below.

In addition, the step length epsilon is defined at line 30 in such a way that it is small if the

node positions rapidly change; the scalar delta then determines the normalized step length.

Finally, delta can also be reduced at line 51 if ind = 1; this is the case when the minimum

of f along the geodesic is attained for the current shape, then the current step length is too

large and has to be reduced.

1 %% The steepest descent method

2

3 function [u, res] = steepestdesc(box, tri, boundpts, neibtri, neibpts, edge, ...

4 light, shadepts, alpha, m, regul, ...

5 u0, itereq, delta0, maxit)

6

7 %% Definition and initialization of several variables
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8 npts = length(u0)/3;

9 h = 1;

10 u = u0;

11 delta = delta0;

12 res = zeros(1, maxit);

13

14 %% Initialization of the search direction

15 kappa = −gradf(box, boundpts, neibtri, neibpts, u', ...

16 light, shadepts, alpha, m, regul);

17

18 while h <= maxit

19 ind = 2;

20

21 while (ind > 1) && (h <= maxit)

22 v = zeros(itereq + 1, 3*npts);

23 v(1, :) = u;

24

25 %% Propagate the solution of the geodesic equation

26 nrm = sqrt(innprod(neibtri, edge, u', kappa, kappa, m, regul));

27 for k = 1:itereq

28 vec = equations(boundpts, neibtri, neibpts, [v(k, :), kappa],

29 m, regul);

30 epsilon = delta/norm(vec(1:3*npts));

31 v(k + 1, :) = v(k, :) + epsilon*vec(1:3*npts)';

32 kappa = kappa + epsilon*vec(3*npts + 1:end)';

33 kappa = kappa*nrm ...

34 / sqrt(innprod(neibtri, edge, u', kappa, kappa, m, regul));

35 end

36

37 %% Find the minimum of f along the geodesic path

38 ind = findmin(box, neibtri, edge, ...

39 light, shadepts, alpha, itereq + 1, v);

40 u = v(ind, :);

41 res(h) = f(box, neibtri, edge, u', light, shadepts, alpha);

42 disp(['ind = ', num2str(ind), ', f = ', num2str(res(h))]);

43

44 %% Calculate the new search direction

45 kappa = −gradf(box, boundpts, neibtri, neibpts, u', ...

46 light, shadepts, alpha, m, regul);

47 plotshape(tri, neibtri, u, kappa, 4, [10 20]);

48 h = h + 1;

49 end

50

51 delta = delta/2;

52 end

The calculation of the right-hand-side of the geodesic equations (2.7) respectively (2.9)

is performed in the function equations. The various input parameter have already been

described above, except the variable uk which is just the concatenation of the vectors u and

kappa to one vector in R4N . At the beginning, the current point on the geodesic and the

corresponding tangent vector are determined from the input parameter. Within the for-loop
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starting at line 19, all the normal vectors to the current mesh and the change of the current

node positions are calculated. At the lines 48 and 51, the user may choose the Riemannian

metric which is used for the geodesic equations.

In detail, the calculation of all the normal vectors is separated into the calculation of the

weighted averaged normal vector and its length at each vertex p. If an Hn-metric is used, this

is more efficient than to call the function n which simply returns the normal vector np at a

vertex p. This will be explained in a moment. Afterwards, the change of the current node

position is stored in the vector vec. If we decide to use the Euclidean inner product in the

shape space S, then κ̇p = 0 for all p ∈ P , see line 49. Otherwise, we also have to determine all

the vectors ṅp using the function n t. But this does not require a lot of computational effort,

if we use the intermediate results from the calculation of the normal vectors np. It remains to

calculate κ̇p for all p ∈ P , which is done within the for-loop starting at line 57. This calculation

requires several variables for technical reasons. However, the main steps are realized at the

lines 78 – 83, where the sums in the numerator and denominator of κ̇p are calculated, compare

equation (2.9). Finally, these values are used at line 86 to determine κ̇p.

1 %% Calculation of the right hand side of the system of geodesic equations

2

3 function vec = equations(boundpts, neibtri, neibpts, uk, m, regul)

4

5 %% Definition and initialization of several variables

6 npts = size(neibtri, 1);

7 vec = zeros(4*npts, 1);

8 nom = cell(npts, 1);

9 den = zeros(npts, 1);

10 nvec = cell(npts, 1);

11 ntvec = cell(npts, 1);

12 tang = cell(npts, 1);

13

14 %% Definition of the point on the geodesic and the corresponding tangent vector

15 u = uk(1:3*npts)';

16 kappa = uk(3*npts + 1:4*npts)';

17

18 %% Calculation of d/dt(u)

19 for delta = 1:npts

20 p = u(3*delta − 2:3*delta);

21 ind = neibtri{delta};
22 nneib = length(ind);

23

24 %% Calculation of the normal vector

25 temp = [0; 0; 0];

26 for k = 1:2:nneib

27 i = ind(k);

28 j = ind(k + 1);

29 temp = temp + crossp(u(3*i − 2:3*i) − p, u(3*j − 2:3*j) − p);

30 end

31 nom{delta} = temp;

32
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33 if norm(temp) == 0;

34 den(delta) = 1;

35 nvec{delta} = temp;

36 else

37 den(delta) = 1/norm(temp);

38 nvec{delta} = temp/norm(temp);

39 end

40

41 %% Calculation of d/dt(uˆdelta)

42 tang{delta} = kappa(delta)*nvec{delta};
43 if boundpts(delta) == 0

44 vec(3*delta − 2:3*delta) = tang{delta};
45 end

46 end

47

48 % %% Calculation of d/dt(kappa) using the Euclidean inner product

49 % vec(3*npts + 1:4*npts) = 0;

50

51 %% Calculation of d/dt(kappa) using a Riemannian metric of Hˆm−type
52 %% Calculation of d/dt(n p)

53 for delta = 1:npts

54 ntvec{delta} = n t(neibtri, u, tang, nom{delta}, den(delta), delta);

55 end

56

57 for delta = 1:npts

58 if boundpts(delta) == 0

59 p = u(3*delta − 2:3*delta);

60 kappap = kappa(delta);

61 nvecp = nvec{delta};
62 ntp = ntvec{delta};
63 tp = tang{delta};
64 ind = neibpts{delta};
65 nneib = length(ind);

66

67 %% Calculation of d/dt(kappaˆdelta)

68 temp1 = [0; 0; 0];

69 temp2 = [0; 0; 0];

70 for k = 1:nneib;

71 l = ind(k);

72 q = u(3*l − 2:3*l);

73 kappaq = kappa(l);

74 nvecq = nvec{l};
75 ntq = ntvec{l};
76 tq = tang{l};
77

78 temp1 = temp1 + (p − q)/norm(p − q)ˆ(2*m) ...

79 * (m*((tp − tq)'*(p − q))ˆ2/norm(p − q)ˆ2 ...

80 − (kappap*ntp − kappaq*ntq)'*(p − q) ...

81 − norm(tp − tq)ˆ2);

82

83 temp2 = temp2 + (p − q)/norm(p − q)ˆ(2*m)*(nvecp − nvecq)'*(p − q);

84 end



38 CHAPTER 3. APPLICATION TO SHAPE FROM SHADING

85

86 vec(3*npts + delta) = (nvecp'*temp1)/(regul + nvecp'*temp2);

87 end

88 end

3.2.2 Geodesic Nonlinear Conjugate Gradient Method

In contrast to the steepest descent method, the nonlinear conjugate gradient (NCG) method

also uses gradients and search directions from previous iterates to calculate the new search

direction. Therefore, it is necessary to ”compare“ tangent vectors from different tangent spaces,

say X ∈ TM1S and Y ∈ TM2S for different meshes M1,M2 ∈ S. In Rn, endowed with the

Euclidean inner product, this is trivial since each tangent space TxRn is identified with Rn itself.

But in general, we cannot identify TM2S with TM1S. However, we may parallel translate the

tangent vector X along a geodesic joining M1 and M2 to a tangent vector X ′ ∈ TM2S; then

one can compare the vectors X ′ and Y , since they are elements of the same tangent space

TM2S.

Generally, the NCG-algorithm follows the same ideas as the steepest descent algorithm

presented in subsection 3.2.1, except that the search direction is calculated in a different

manner. For this case, consider the old iterate x0 ∈ S, the gradient ∇f(x0) ∈ Tx0S, the search

direction v0 ∈ Tx0S, the new iterate x1 ∈ S, the gradient ∇f(x1) ∈ Tx1S and the (discrete)

geodesic path u joining x0 and x1. Then we parallel translate the vector v0 along u to a vector

v′0 ∈ Tx1S, which is in the same tangent space as ∇f(x1). The new search direction v1 ∈ Tx1S
is then calculated using the Fletcher-Reeves scheme,

v1 := ∇f(x1) + γv′0 with γ :=
〈∇f(x1),∇f(x1)〉S

〈∇f(x0),∇f(x0)〉S

where 〈·, ·〉S denotes the Riemannian metric in S.

This algorithm is implemented in the function ncg, which has the same input arguments as

the function steepestdesc, except from the variable restart which determines the number

of iterations performed before the search direction is reset to the steepest descent direction.

Except for some technical details, the function ncg coincides with the function steepestdesc

up to line 47. Then the old negative gradient of f is stored and the new negative gradient

of f is calculated. If the minimum of f along the geodesic path is attained for the current

mesh, then a restart is performed, see line 56. The variable newgrad is true if and only if the

search direction has just been reset but not in the previous iteration step. Then the condition

in line 24 is true if ind = 1 and the search direction has been reset but not directly before.

If the minimum of f is attained for the current mesh even for points along a geodesic in the

direction of steepest descent, then the algorithms remains at the current iterate; consequently,

ind = 1, newgrad is false (see line 59) and the condition at line 24 is false (always provided

h ≤ maxit). If no restart is performed, then the new search direction is calculated as described

above and the variable newgrad is set false. However, we employed the function parallel,

which we describe below, to calculate the parallel translate of the old search direction to the



3.2. OPTIMIZATION ALGORITHMS 39

current iterate. Finally, the step length delta is reduced, if the algorithm stopped with the

current step length delta and h ≤ maxit.

1 % The nonlinear conjugate gradient method using the Fletcher−Reeves−scheme
2

3 function [u, res] = ncg(box, tri, boundpts, neibtri, neibpts, edge, ...

4 light, shadepts, alpha, m, regul, ...

5 u0, itereq, delta0, maxit, restart)

6

7 %% Definition and initialization of several variables

8 npts = length(u0)/3;

9 h = 1;

10 u = u0;

11 delta = delta0;

12 res = zeros(1, maxit);

13

14 %% Initialization of the search direction

15 kappa1 = −gradf(box, boundpts, neibtri, neibpts, u', ...

16 light, shadepts, alpha, m, regul);

17 lambda1 = kappa1;

18 newgrad = true;

19

20 while h <= maxit

21 ind = 2;

22

23 %% Calculate and plot the deformed shape

24 while ((ind > 1) | | (newgrad == true)) && (h <= maxit)

25 uu = zeros(itereq + 1, 3*npts);

26 kk = zeros(itereq + 1, npts);

27 uu(1, :) = u;

28 kk(1, :) = lambda1;

29

30 %% Propagate the solution of the geodesic equation

31 nrm = sqrt(innprod(neibtri, edge, u', lambda1, lambda1, m, regul));

32 for k = 1:itereq

33 vec = equations(boundpts, neibtri, neibpts, ...

34 [uu(k, :), kk(k, :)], m, regul);

35 epsilon = delta/norm(vec(1:3*npts));

36 uu(k + 1, :) = uu(k, :) + epsilon*vec(1:3*npts)';

37 kk(k + 1, :) = kk(k, :) + epsilon*vec(3*npts + 1:end)';

38 kk(k + 1, :) = kk(k + 1, :)*nrm/sqrt(innprod(neibtri, edge, ...

39 u', kk(k + 1, :), kk(k + 1, :), m, regul));

40 end

41

42 %% Find the minimum of f along the geodesic path

43 ind = findmin(box, neibtri, edge, ...

44 light, shadepts, alpha, itereq + 1, uu);

45 u = uu(ind, :);

46 res(h) = f(box, neibtri, edge, u', light, shadepts, alpha);

47 disp(['ind = ', num2str(ind), ', f = ', num2str(res(h))]);

48
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49 %% Save the old gradient and calculate the new gradient

50 kappa0 = kappa1;

51 kappa1 = −gradf(box, boundpts, neibtri, neibpts, u', ...

52 light, shadepts, alpha, m, regul);

53

54 plotshape(tri, neibtri, u, kappa1, 4, [10 20]);

55

56 if (ind == 1) | | (mod(h, restart) == 0)

57 %% A restart is performed

58 lambda1 = kappa1;

59 newgrad = ˜newgrad;

60 disp('restart');

61 else

62 %% The old search direction is parallel translated

63 gamma = innprod(neibtri, edge, u', kappa1, kappa1, m, regul) ...

64 / innprod(neibtri, edge, u', kappa0, kappa0, m, regul);

65 lambda0 = parallel(boundpts, neibtri, neibpts, edge, ...

66 [0:epsilon:(ind − 1)*epsilon], ...

67 uu(1:ind − 1,:), kk(1:ind − 1,:), lambda1, ...

68 m, regul);

69

70 %% The new search direction is calculated

71 lambda1 = kappa1 + gamma*lambda0;

72 newgrad = false;

73 end

74

75 plotshape(tri, neibtri, u, lambda1, 5, [10 20]);

76 h = h + 1;

77 end

78

79 delta = delta/2

80 end

The function parallel calculates the parallel translate of a given tangent vector along

a geodesic using either equation (2.10) or (2.11). The input parameter boundpts, neibtri,

neibpts and edge have already been described in subsection 3.2.1. The vector epsilon con-

tains the step lengths along the geodesic path uu and kk represents the corresponding tangent

vectors. lambda is the vector which is parallel displaced; m and regul are the same as above.

Analogously to the function equations, we may choose the Riemannian metric which is used

in the shape space S. If we use the Euclidean metric, then the parallel translate is just lambda

due to equation (2.10).

If we decide to use an Hm-metric, then the function follows quite the same strategy to

calculate the parallel translate as in the calculation of the geodesic path. This is the case

since the geodesic equation and the equation of parallel translation are very similar. At the

beginning, the norm of lambda is calculated. Due to Lemma 2.19 (with U = V = Y the tangent

vector represented by lambda), this norm is a constant under parallel displacement. Then the

parallel translate of the vector is calculated at each point of the geodesic path; this is realized

with the for-loop starting at line 18. Within this loop, the following steps are repeated. First,

all the normal vectors to the current mesh are calculated and several intermediate results are
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stored; this is done analogously to the function equations. In the same manner as above,

all the vectors ṅp are calculated at line 55. Now, the change of the tangent vector lambda

is calculated, but since the boundary is fixed during the minimization process, we need not

consider its parallel translate at the boundary. Now, we have to deal with several variables

which we need for technical reasons. But similar to the function equations we calculate the

numerator and the denominator of the right-hand-side of equation (2.11) within the lines 81 –

88. Then the parallel translate of lambda at the next iterate of the geodesic path is calculated

at line 92. If the update is done for all points, then the vector is scaled at line 96 in such a

way that is has the same norm as the initial tangent vector.

1 % Calculation of the parallel translate of a tangent vector along a geodesic

2

3 function vec = parallel(boundpts, neibtri, neibpts, edge, ...

4 epsilon, uu, kk, lambda, m, regul)

5

6 % %% Parallel translation of lambda using the Euclidean inner product

7 % vec = lambda;

8

9 %% Parallel translation of lambda using a Riemannian metric of Hˆm−type
10 %% Definition and initialization of several variables

11 npts = size(neibtri, 1);

12 nsteps = length(epsilon);

13

14 %% Calculation of the norm of the initial tangent vector

15 nrm = sqrt(innprod(neibtri, edge, uu(1, :)', lambda, lambda, m));

16

17 %% Calculate the parallel translate at all points of the geodesic path

18 for h = 1:nsteps

19 u = uu(h, :)';

20 kappa = kk(h, :)';

21 lambda0 = lambda;

22 nom = cell(npts, 1);

23 den = zeros(npts, 1);

24 nvec = cell(npts, 1);

25 ntvec = cell(npts, 1);

26 tang = cell(npts, 1);

27

28 %% Calculation of d/dt(u)

29 for i = 1:npts

30 p = u(3*i − 2:3*i);

31 ind = neibtri{i};
32 nneib = length(ind);

33

34 %% Calculation of the normal vector

35 temp = [0; 0; 0];

36 for j = 1:2:nneib

37 k = ind(j);

38 l = ind(j + 1);

39 temp = temp + crossp(u(3*k − 2:3*k) − p, u(3*l − 2:3*l) − p);
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40 end

41 nom{i} = temp;

42

43 if norm(temp) == 0;

44 den(i) = 1;

45 nvec{i} = temp;

46 else

47 den(i) = 1/norm(temp);

48 nvec{i} = temp/norm(temp);

49 end

50 tang{i} = kappa(i)*nvec{i};
51 end

52

53 %% Calculation of d/dt(n p)

54 for i = 1:npts

55 ntvec{i} = n t(neibtri, u, tang, nom{i}, den(i), i);

56 end

57

58 for i = 1:npts

59 if boundpts(i) == 0

60 p = u(3*i − 2:3*i);

61 nvecp = nvec{i};
62 ntp = ntvec{i};
63 tp = tang{i};
64 xp = lambda0(i)*nvecp;

65 kappap = kappa(i);

66 ind = neibpts{i};
67 nneib = length(ind);

68

69 %% Calculation of d/dt(lambdaˆdelta)

70 temp1 = [0; 0; 0];

71 temp2 = [0; 0; 0];

72 for k = 1:nneib;

73 l = ind(k);

74 q = u(3*l − 2:3*l);

75 kappaq = kappa(l);

76 nvecq = nvec{l};
77 ntq = ntvec{l};
78 tq = tang{l};
79 xq = lambda0(l)*nvecq;

80

81 temp1 = temp1 + (p − q)/norm(p − q)ˆ(2*m) ...

82 * (m*((xp − xq)'*(p − q)) ...

83 * ((tp − tq)'*(p − q))/norm(p − q)ˆ2 ...

84 − (kappap*ntp − kappaq*ntq)'*(p − q) ...

85 − (xp − xq)'*(tp − tq));

86

87 temp2 = temp2 + (p − q)/norm(p − q)ˆ(2*m) ...

88 * ((nvecp − nvecq)'*(p − q));

89 end

90

91 temp3 = (nvecp'*temp1)/(regul + nvecp'*temp2);
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92 lambda(i) = lambda0(i) + epsilon(h)*temp3;

93 end

94 end

95

96 lambda = lambda*nrm ...

97 / sqrt(innprod(neibtri, edge, u, lambda, lambda, m, regul));

98 end

99 vec = lambda;

3.3 Results and Comparison of the Different Approaches

In this section, we present the results of the optimization algorithms, which we described in

section 3.2, in different situations. For this case, we consider three gray level shading images.

The first image contains the calculated shading values of a smooth synthetic surface which is

the graph of a function. Besides, we use the same surface to generate various shading images;

one image for a light direction which coincides with the direction of the observer and some

images for the case of an oblique light source. The second shape which we want to reconstruct

is the bottom of a small ceramic box. This shape has quite a challenging topography with

smooth parts and a sharp circular elevation. Finally, we test our optimization methods with a

shading image of the author’s face.

In section 3.2 we discussed two algorithms, the geodesic steepest descent method and the

geodesic NCG-method. However, we will see that the difference between these two methods

depends on the problem but is generally quite small. Moreover, the visual results are nearly the

same, hence, we will only present the images of the results obtained with the NCG-method.

Furthermore, we have to find appropriate values for various parameter in the optimization

algorithms; these values shall only depend on the shape which we want to reconstruct. We do

this in order to compare the performance of the algorithms using different Riemannian metrics

in the shape space S; these metrics shall be the Euclidean metric, the H0- and the H2-metric.

Below, we collect these values for each shape and discuss the advantages of these metrics in

the different situations.

First, we consider a synthetic surface, which is the graph of the following function g :

[−1, 1]× [−1, 1]→ R,

g(x, y) = e
1

x2−1 e
1

y2−1

(
cos
(

10
√

(x+ .2)2 + y2
)

+ cos
(

10
√

(x− .2)2 + y2
))

.

This surface is shown in three different perspectives in Figure 3.2. If the direction of the

light coincides with the z-axis, we cannot initialize the algorithms with a triangulated planar

surface since this is already a critical point of the function f (see equation (3.1)). Hence, we

use a triangulated mesh which slightly differs from a plane. Then, we reconstruct the shape

in two steps. First, we use a coarse mesh (with edge length 0.1) to construct a shape which

has the correct surface topography, see Figure 3.3. If the resolution is too coarse, then we

may not reconstruct all details of the topography; otherwise, if the resolution is too fine, the

reconstruction is generally not smooth enough. An increase of the regularization term of f

is not the best choice since this also causes the final reconstruction to be overly smooth in



44 CHAPTER 3. APPLICATION TO SHAPE FROM SHADING

comparison to the given data. However, this first optimization process results in a certain

shape. Now, we refine the corresponding mesh and use this refined mesh (with edge length

0.05) as the initialization of the second optimization process on a finer level. This finer level

is also the resolution which will be used for the reconstruction of the remaining shapes.

Figure 3.4 shows the final reconstruction of the surface for the three considered Riemannian

metrics. The convergence of the two optimization processes is presented in the Figures 3.5 and

3.6. One sees that the difference between the steepest descent and the NCG-method is quite

small; however, the reconstruction is a bit more smooth, if the H0- or the H2-metric is used.

Besides, Table 3.1 contains the values of the function f for the initial and final shapes of the

two optimization processes, if the steepest descent method or the NCG-method is used. These

results were obtained with the following choices for the parameters which we already described

in section 3.2.

� light direction l = (0, 0, 1), regularization α = 0.05,

� ρ = 0.001 for the H0-metric and ρ = 30 for the H2-metric,

� itereq = 3, maxit = 50, delta = 0.01 and restart = 5 for the first optimization

process,

� itereq = 3, maxit = 20, delta = 0.05 and restart = 5 for the second optimization

process.

For the H2-metric a higher regularization is necessary as for the H0-metric since ‖p− q‖2n is

much smaller for n = 2, and hence, the absolute value of〈
np,

∑
q∈N (p)\{p}

p− q
‖p− q‖2n

〈np − nq, p− q〉

〉

may be much larger. This will be the same for the remaining shapes.

The second shape is the bottom of a small ceramic box. We use a gray level image, which

is a part of a usual jpg-image, to reconstruct the surface. However, the surface of the ceramic

is also specular and thus some reflexions appear in the image. These reflexions are removed in

the course of preprocessing the shading image. Figure 3.7 also shows the initial shape for the

optimization algorithms, which is a flat parabolic surface. Here, we only use one resolution

to reconstruct the surface. In Figure 3.8 the shading images of the initial shape and of the

reconstructed shape for the H2-metric are plotted. Figure 3.9 shows the final result for the

three different Riemannian metrics. Similar to the synthetic surface, the results for the different

metrics only slightly differ. In addition, Figure 3.10 shows the convergence of the algorithms

and Table 3.2 the final values of f for the steepest descent and NCG-method. Here, we see

that the NCG-algorithm reaches a smaller value of f than the steepest descent method after

the same number of iterations. The choices for the parameters in the algorithms are

� light direction l = (0, 0, 1), regularization α = 0.1,

� ρ = 0.01 for the H0-metric and ρ = 100 for the H2-metric,



3.3. RESULTS AND COMPARISON OF THE DIFFERENT APPROACHES 45

� itereq = 3, maxit = 100, delta = 0.02 and restart = 5 for the optimization process.

However, we have to keep in mind that the higher the regularization is, the more Euclidean

is the performance of the metric. But due to numerical tests, we have to choose quite a

high regularization for the H2-metric; consequently, the behaviour is similar to the Euclidean

metric.

A challenging problem is the reconstruction of a face from a shading image. Firstly, this

is the case since a face consists of rather smooth parts together with regions where the local

gradient is quite large. Secondly, some parts of the face may even not be visible, for example

the side of the nose; strictly speaking, we therefore cannot consider the face as the graph of a

function as explained in section 3.1. And thirdly, a face is generally not an ideal Lambertian

surface. Especially, the black eyebrow and eyelash have to be removed in the image; otherwise,

the algorithms ”interpret“ the eyelash as a region with a large gradient, in contrast to the

reality. Figure 3.11 shows the initial shape for the reconstruction and the shading image of the

author’s face, where the eyebrow and eyelash are at least toned down. However, neither the

steepest descent method nor the NCG-method converges to a final shape which is sufficiently

close to any face. Only within the first 30 iterations, the reconstruction is similar to a face.

Thus, we compare the intermediate results for the Euclidean metric, the H0- and the H2-

metric after 10, 20 and 30 iterations (see Figures 3.13 – 3.15). Besides, Figure 3.12 contains

the shading images of the initial shape and of the reconstruction of the face after 30 iterations

using the H2-metric. Figure 3.16 shows the convergence of the NCG-algorithm for these

three metrics. However, we see that the values of f only slightly decrease during the first 30

iterations; hence, one has to adopt the functional f , and maybe also the used Riemannian

metric, to find a realistic reconstruction of the face. Table 3.3 contains certain values of f ,

which are within the same range for both, the steepest descent method and the NCG-method.

For the algorithms we use

� light direction l = (0, 0, 1), regularization α = 0.1,

� ρ = 0.001 for the H0-metric and ρ = 10 for the H2-metric,

� itereq = 3, maxit = 30, delta = 0.02 and restart = 5 for the optimization process.

Finally, we apply the steepest descent method and the NCG-method to reconstruct the

synthetic shape, but now from the shading image of an oblique light source at l = (0.1, 0, 1),

l = (0, 0.1, 1) and l = (0.1, 0.1, 1). Strictly speaking we use the normalized vector l̄ = l/‖l‖. For

this case, we use exactly the same approach as for the reconstruction of the synthetic surface

described above, except from the number of iterations which we increase to 100 iterations for

both, the coarse-grid and the fine-grid-optimization process. In addition, we use the negative

of the initial shape used above for the cases l = (0, 0.1, 1) and l = (0.1, 0.1, 1); and we also

invert the final shape for the case l = (0, 0.1, 1). The results are shown in Figure 3.17 for the

steepest descent method and in Figure 3.18 for the NCG-method. The best result is obtained

with a light source at l = (0, 0.1, 1). For the case l = (0.1, 0, 1), the algorithms are able to

reconstruct the global topography, whereas for l = (0.1, 0.1, 1) neither the steepest descent nor

the NCG-algorithm sufficiently reconstructs the given surface. Moreover, the convergence of
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the second optimization process is plotted in Figure 3.19 for the steepest descent and in Figure

3.20 for the NCG-method. One sees that the values of f for the last iterates are quite close to

their limit; only the steepest descent method for l = (0.1, 0, 1) seems to minimize f (relevantly)

also within the next few iterations. Furthermore, Table 3.4 compares the values of f for the

initial and final shapes of the two optimization processes.

Figure 3.2: The synthetic shape shown in three different perspectives. Note the different scales
of the z-axis.

Figure 3.3: The shading image of the synthetic shape, the initial shape and the reconstructed
surface after the coarse-grid-optimization process.

Figure 3.4: Reconstruction of the synthetic shape using different Riemannian metrics. From
left to right: Euclidean, H0- and H2-metric.
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Figure 3.5: Convergence of the coarse-grid-optimization process for the synthetic shape using
different Riemannian metrics. From left to right: Euclidean, H0- and H2-metric.

Figure 3.6: Convergence of the fine-grid-optimization process for the synthetic shape using
different Riemannian metrics. From left to right: Euclidean, H0- and H2-metric.

Figure 3.7: The bottom of the ceramic box, its shading image and the initial shape.

Figure 3.8: The shading images of the initial shape and of the reconstructed shape.
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Figure 3.9: Reconstruction of the bottom of the ceramic box using different Riemannian met-
rics. From left to right: Euclidean, H0- and H2-metric.

Figure 3.10: Convergence of the optimization process for the bottom of the ceramic box using
different Riemannian metrics. From left to right: Euclidean, H0- and H2-metric.

Figure 3.11: The shading image of the author’s face and the initial shape.

Figure 3.12: The shading images of the initial shape and of the reconstruction of the face.
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Figure 3.13: Reconstruction of the face after 10 iterations using different Riemannian metrics.
From left to right: Euclidean, H0- and H2-metric.

Figure 3.14: Reconstruction of the face after 20 iterations using different Riemannian metrics.
From left to right: Euclidean, H0- and H2-metric.

Figure 3.15: Reconstruction of the face after 30 iterations using different Riemannian metrics.
From left to right: Euclidean, H0- and H2-metric.

Figure 3.16: Convergence of the optimization process for the face using different Riemannian
metrics. From left to right: Euclidean, H0- and H2-metric.



50 CHAPTER 3. APPLICATION TO SHAPE FROM SHADING

Figure 3.17: Reconstruction of the synthetic shape using the steepest descent method, the
Euclidean metric and an oblique light source. From left to right: l = (0.1, 0, 1), l = (0, 0.1, 1),
l = (0.1, 0.1, 1).

Figure 3.18: Reconstruction of the synthetic shape using the NCG-method, the Euclidean
metric and an oblique light source. From left to right: l = (0.1, 0, 1), l = (0, 0.1, 1), l =
(0.1, 0.1, 1).

Figure 3.19: Convergence of the fine-grid-optimization process for the synthetic shape using
the steepest descent method, the Euclidean metric and an oblique light source. From left to
right: l = (0.1, 0, 1), l = (0, 0.1, 1), l = (0.1, 0.1, 1).

Figure 3.20: Convergence of the fine-grid-optimization process for the synthetic shape using
the NCG-method, the Euclidean metric and an oblique light source. From left to right: l =
(0.1, 0, 1), l = (0, 0.1, 1), l = (0.1, 0.1, 1).
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Table 3.1: The values of the function f for the initial and final shapes in the reconstruction of
the synthetic surface. Left: Steepest descent method. Right: NCG-method

.

Eu H0 H2

f
(1)
init 5.29 5.29 5.29

f
(1)
final 2.54 2.69 2.52

f
(2)
init 10.24 10.97 9.99

f
(2)
final 3.63 3.92 3.84

Eu H0 H2

f
(1)
init 5.29 5.29 5.29

f
(1)
final 2.64 2.60 2.58

f
(2)
init 10.63 10.51 10.09

f
(2)
final 3.64 3.67 4.03

Table 3.2: The values of the function f for the initial and final shape in the reconstruction of
the bottom of the ceramix box. Left: Steepest descent method. Right: NCG-method

.

Eu H0 H2

finit 27.94 27.94 27.94

ffinal 9.31 9.36 9.05

Eu H0 H2

finit 27.94 27.94 27.94

ffinal 6.63 6.77 7.18

Table 3.3: The values of the function f for the initial shape and the reconstruction of the face
after 10, 20 and 30 iterations. Left: Steepest descent method. Right: NCG-method

.

Eu H0 H2

finit 98.19 98.19 98.19

f10 89.35 89.30 89.48

f20 78.58 78.62 79.41

f30 69.20 68.97 71.59

Eu H0 H2

finit 98.19 98.19 98.19

f10 90.27 89.91 89.72

f20 79.84 79.48 79.87

f30 70.53 70.04 71.66

Table 3.4: The values of the function f for the initial and final shapes in the reconstruction of
the synthetic surface using the Euclidean metric and an oblique light source l. Left: Steepest
descent method. Right: NCG-method

.

l (0.1, 0, 1) (0, 0.1, 1) (0.1, 0.1, 1)

f
(1)
init 5.36 5.43 5.50

f
(1)
final 2.11 2.36 1.92

f
(2)
init 7.93 9.57 8.22

f
(2)
final 2.92 3.47 3.50

l (0.1, 0, 1) (0, 0.1, 1) (0.1, 0.1, 1)

f
(1)
init 5.36 5.43 5.50

f
(1)
final 1.98 2.14 1.84

f
(2)
init 7.72 8.60 7.90

f
(2)
final 2.78 2.98 3.36





Chapter 4

Remarks and Outlook

In the process of writing the thesis and in discussions with Prof. Ring, some suggestions for

further improvements or further studies came up. Some of these ideas would require to rewrite

a large part of the algorithms and functions and could be part of future research.

One suggestion concerns the Riemannian metric which is used in the shape space S. In the

thesis, we considered the Euclidean metric and the Hn-metric. Since, the Euclidean metric

is the standard inner product in S ∼= R3N , this inner product serves as a reference metric

for more sophisticated metrics. For example, we may compare the advantages of each metric

for a certain problem. However, the idea to introduce the Hn-metric was to adopt the as-

isometric-as-possible-metric from [4] in such a way to penalize points that come too close to

each other more effectively. And in principle, we could realize this idea. Nevertheless, Kilian

et al. [4] wanted to deform meshes as-isometric-as-possible, hence, they looked for a metric

which penalizes non-isometric deformations. But we are not interested in special deformations,

we want to minimize a function in the shape space. Thus, it may be more advantageous

to construct a metric such that the optimal descent directions for a function allow a faster

convergence to the minimizer, in comparison to the Euclidean metric.

Another idea was introduced in the context of the geodesic equations. In order to obtain

an explicit formula for κ̇p, we had to make an approximation (see equation (2.8)) and we

mentionned that an exact solution would require to solve a band-structured linear system for

~̇κ. However, one may bother about the disadvantage of this simplification. The answer can

be given if we rewrite the functions used in the algorithm and compare the performance. But

again, we want to minimize a function and in addition this process should be as fast as possible.

Therefore, we should avoid too much computational effort unless this is useful to obtain a faster

convergence. If we replace all approximations similar to equation (2.8) by a matrix solve, then

such efforts are necessary to calculate the optimal descent direction, a step along a geodesic

and the parallel translate of a vector.

Furthermore, one may think about the advantage of the explicit Euler method which is

used in two functions. For sure, one may apply a Runge-Kutta-method, which yields a more

accurate approximation. But this is also more expensive since we have to evaluate the right-

53



54 CHAPTER 4. REMARKS AND OUTLOOK

hand-side of the geodesic equations, or of the equations of parallel translation, about four times

as much as for the explicit Euler method. Moreover, the situation is even more complicated

if we do not have an explicit formula for ~̇κ which we can evaluate, but if we have to solve a

linear system for each point in the mesh in order to calculate ~̇κ.

In addition, one may see a slight analogy between the step length used for the explicit

Euler steps and the Courant-Friedrichs-Lewy-condition (CFL-condition). In the context of

partial differential equations solved with a finite-difference-scheme, this condition relates the

step length ∆t in time to the size ∆x of the spatial discretization. This condition is a necessary

condition for the convergence of the finite-difference-scheme. In one dimension and for explicit

Euler steps, this condition reads
u∆t

∆x
≤ 1

where u is the velocity of the system associated with the equation. For sure, we do not solve

a partial differential equation, but nevertheless, we also use a discretized surface in space and

discrete time steps. The step length in time which we use in the algorithms is essentially

ε =
δ

‖v‖

where ‖v‖ is the norm of the first time derivative of (p)p∈P and δ ≤ 0.05. And this satisfies

the CFL-condition since the size of our space discretization is always greater or equal 0.05.
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