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Chapter 1

Introduction

The aim of this thesis is to investigate the applicability of two optimization algorithms in shape
space and to apply them to the shape from shading (SFS) problem. More precisely, we use
the steepest descent method and the nonlinear conjugate gradient (NCG) method to solve the
SES-problem in a certain shape space which we endow with an appropriate Riemannian inner
product. Instead of steps along straight lines we shall take steps along geodesics with respect
to the Riemannian metric. Moreover, we will have to use the concept of parallel displacement
in order to apply the NCG-algorithm.

In the context of optimization in vector spaces one often pursues the following idea. Given
a vector space V, a function f : V — R and a point xg € V, one chooses a descent direction
v € V. Then a linesearch method with a certain step-size control is performed to find a scalar
a € R. The new iterate is then defined by z1 := 29 + « - v. This idea essentially uses the
underlying vector space structure of V. First, the descent direction v is a priori in the tangent
space 17, V; but since V' is a vector space, T;,,V can be identified with V. Second, the definition
of x1 makes use of the operations + and - in V. In the more general setting of Riemannian
manifolds such identifications and vector operations are not at hand, hence, one has to use a
different strategy, for example the following one. Given a manifold M, a function f: M — R
and a point g € M, one chooses a descent direction v € T, M. Then one calculates the
geodesic u : R — M through zy parametrized by arc length with «(0) = z¢ and tangent vector
4(0) = v. Afterwards a linesearch method with a certain step-size control is performed to find a
scalar v € R. The new iterate is then defined by z; := u(«). The descent direction depends for
sure on the optimization method which is used. Subsequently, we shall concentrate ourselves
on the (geodesic) steepest descent and the (geodesic) NCG-method using the Fletcher-Reeves
scheme. The latter method has been analyzed by W. Ring and B. Wirth [7] in the context of
Riemannian manifolds.

A special Riemannian manifold is a shape space, which is endowed with a certain Rieman-
nian inner product. In general, a shape space is a set whose elements can be identified with
geometrical objects. These objects may be smooth curves or surfaces as well as polygons and
other types of geometrical shapes. For typical examples, which are recently studied in research,
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see the article of P. Michor and D. Mumford [6] for infinite-dimensional shape spaces and the
article of M. Kilian et al. [4] for finite-dimensional shape spaces. However, we will use the
shape space of triangular meshes in R? to solve the SFS-problem. This shape space shall be
endowed with different Riemannian metrics in order to compare the results of the optimization
algorithms for these different metrics in the shape space.

Roughly speaking, the SFS-Problem is the following: Given a shading image of a surface,
i.e. an image of the surface which is illuminated in a certain way, we want to reconstruct this
surface. The first approach towards a solution of this problem was presented by Horn in [2].
The basic idea is to determine several paths on the surface, so called characteristics. In order
to reconstruct the surface topography sufficiently well, several characteristics which are close
enough to each other are necessary. See [2] and also [5] for a more detailed description of this
approach. However, there are several other methods which have been proposed within the last
decades to solve the SF'S-Problem. An overview of these methods is given in [8].

The organization of the thesis is as follows. Chapter 2 is devoted to the theoretical studies
which are necessary to implement the steepest descent algorithm and the NCG-algorithm in a
shape space with a Riemannian metric. In chapter 3 we apply these minimization algorithms to
solve the SF'S-problem for three different shapes. In addition, we compare the obtained results
for different Riemannian metrics in an appropriate shape space. Finally, a short chapter with
remarks and an outlook to future research concludes the thesis.

In detail, we establish all the results from the literature in section 2.1 which we need for
the remainder of the thesis. Subsection 2.1.1 collcets fundamental definitions, like manifolds
and tangent vectors. Subsection 2.1.2 derives the geodesic equation and the equation of par-
allel translation for a general connection on a manifold. To the end, we proof that there
exists a unique torsion free and metric connection on each Riemannian manifold — the Lewvi-
Civita-connection. Subsection 2.1.3 introduces the notion of shape spaces and provides several
examples. Besides, various technical notations will be defined in this subsection. Afterwards,
we construct various Riemannian metrics in section 2.2. In section 2.3 we deduce the ex-
plicit geodesic equations for the considered metrics, and in section 2.4 we establish the explicit
equations of parallel translation for these metrics.

After a short introduction to the SFS-problem, we define in section 3.1 that function on
the shape space which we will minimize in order to solve the SFS-problem. For this case,
we also calculate the optimal descent direction for each Riemannian metric. In section 3.2
we present the implementation of the two considered optimization techniques. The steepest
descent method and the function evaluating the geodesic equations will be discussed in sub-
section 3.2.1; the NCG-method together with the function calculating the parallel translate of
a vector is explained in subsection 3.2.2. Finally, we collect in section 3.3 the results which we
obtained with the different Riemannian metrics and the two minimization algorithms. In this
context, we shall compare numerical facts as well as the visual impression of the reconstructed
surfaces.



Chapter 2

Construction Of Optimization
Algorithms In Shape Space

2.1 Tools from Differential Geometry

2.1.1 Preliminaries

The concepts of differential geometry presented below are nowadays standard techniques, so
there will be nothing new to researchers. Instead, the subsections 2.1.1 and 2.1.2 should be
seen as a collection of facts which will be necessary or important for the subsequent studies in
the thesis. The following ideas and proofs are mainly based on [1] and [3].

Definition 2.1. A manifold M™ of dimension n is a set satisfying the following properties.
e M™ is a connected Hausdorff space with a countable base at each p € M™.

e There exists an open covering C of M™ with the following property. For every U € C
there exists an open set 2 C R™ and a homeomorphism zy : U — Q. (We call U a
(coordinate) patch, xy a (coordinate) map (or local coordinates of M™) and (U,zy) a
(coordinate) chart.)

Moreover, we call a manifold M™ a differentiable manifold, if for all U,V € C with UNV # (),
zyoxy txp(UNV) = ay(UNV)

is differentiable.

Definition 2.2. Let M™ be a differentiable manifold.

1. A pair (W,y) of an open set W C M™ and a homeomorphism y : W — y(W) C R" is
called compatible with M™, if for all charts (U, zy) with U NW # (),

you, taxy(UNW) - y(UNW) and zpoy ' :y(UNW)—ap(UNW)

3
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are differentiable.

2. We call
A= {(W,y)|(W,y) is compatible with M"}

an atlas of M™.

Definition 2.3. Let M" be a differentiable manifold, p € M™ and A, := {(U,zy) € A| p € U}.
Then, a tangent vector X at p is a map

X {.Ap — R”,
(U) I‘U) = Xy = (Xlljv aX[’r})

such that for all (U, zy), (V,zy) € A,

Jj=1

The tangent space T,M™ to M"™ at p is the set of all tangent vectors to M"™ at p, and the
tangent bundle
TM":= (] T,M"
peEM™

is the union of all tangent spaces T, M".

Remark 2.4. Alternatively, one may also use the following equivalent definition of a tangent
vector. Let M™ be a differentiable manifold, p € M™ and A, := {(U,zy) € .A‘ p € U}. Now,
let 0 € I C R be an open interval and v : I — M™ be a differentiable curve with v(0) = p.
Then, for all (U,zy) € A, there exists an open interval 0 € Jyy C I such that vy(Jy) C U and

yui=zxyory : Jy — R"
is differentiable. Hence, we may consider the vector
X = (Xby ooy Xp) = 745 (0) € R

A tangent vector X at p can now be defined as the collection of all vectors Xy with (U, zy) €
A,; formally we write

X = (Xv)(Wap)ea,-

Furthermore, we also have that for all (U, zy), (V,zv) € A,,

Xy 2y 025" 0wy 07)(0) = D(ay 0 35") (2 0 7)(0)) - - (x 07)(0)

d
(zy 07)(0) 7

=@ =

and, consequently,
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Remark 2.5. Let M"™ be a differentiable manifold, p € M™, U,V coordinate patches containing
p, [ € C®(M") and X € T,M". Then,

-~ (01 i N~ (9f Y aﬁf i\ of j
Z(axiv(p)) Xp=> <3xiv(p)>; (a%(p)> X, => (8%@)) X7,

i=1 i=1 j=1

Consequently, the following definition is independent of the coordinates used.

Definition 2.6. Let M" be a differentiable manifold, p € M™, (x!,...,2") local coordinates
on M" around p, f € C>°(M") and X € T,M". Then, we define

x(n=3 (L) x

i=1

Remark 2.7. In the situation of definition 2.6, one immediately sees that T, M" is a real

o) 9
8.7)1 p,..., 81’” P

is a basis of T,M". Consequently, each tangent vector X € T,M" can be identified with a

vector space and that

differential operator on smooth functions f € C*°(M").

Definition 2.8. Let M" be a differentiable manifold, (U, z) a coordinate chart. Then, a vector
field X on U is a map

U —TM",

n .
p —X :ZXZ(p)aii
=1

X:

P’

where X € C°°(U) holds for all i € {1,...,n}. The set of all tangent vector fields on M™ is
denoted by V(M").

Remark 2.9. For the remainder of the thesis, we make the following conventions. Every
manifold is assumed to be a differentiable manifold; and every curve in a manifold is assumed
to be of class C*°. In addition, we shall often use the notation

d

0; = —

out
for the basis vectors of the tangent space 7, M" to a manifold M" at a point p € M". If M"
is a manifold with a (Pseudo-)Riemannian metric (-, ), we denote the (pseudo-)metric tensor

and its inverse by
gij = <6Z,8]> and gij = (Gil)ij where G = (gij)ij.

Furthermore, we use the Finstein summation convention: Any index which occurs twice in a
product is to be summed from 1 up to the space dimension, e.g.

i=1 j=1
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2.1.2 Connections, Geodesics and Parallel Transport

Definition 2.10. Let M"™ be a manifold. Then, a map D : V(M™) x V(M"™) — V(M") is
called a connection on M™, if the following properties are satisfied for all v, w, X, Y € V(M"),
a,b € Rand f e C®(M"):

Dx(av+bw) = aDxv+bDxw,
Dyxypyv = aDxv+bDyw,
Dx(fv) = X(f)v+ fDxv.

Moreover, we call a connection D torsion free, if for all X, Y € V(M™),
[X,Y]=DxY — Dy X,

where [X, Y] denotes the Lie bracket. If M™ is a Riemannian manifold with metric (-,-), we
call a connection D metric, if for all Z € V(M™),

X(Y,Z) = (DxY, Z) + (Y,Dx Z).

Definition 2.11. Let M™ be a manifold, D a connection on M™, U a coordinate patch and
(é1,...,en) a basis of T,M™ for all p € U. Then, the symbols w}k defined via

D e, = eiwék
are called the coefficients of the connection D with respect to (eq, ..., €y).

Definition 2.12. Let M™ be a manifold with local coordinates (u!,...,u™), D a connection on
M", x =z(u(t)) a curve in M", Y € V(M™) and T € V(M"™) such that T' = dz/dt along =.

1. z is called a geodesic, if
DrT = 0.

2. Y is said to be parallel displaced along x, if

DrY =0.

Proposition 2.13. Let M™ be a manifold with local coordinates (u',...,u™), D a connection
on M", z = x(u(t)) a curve in M™, Y € V(M"), T € V(M"™) such that T = dz/dt along x.

1. x is a geodesic, if and only if

d?u’ ;. dul du® ,
W +wjkﬁﬂ =0 fO?” all 1€ {1, ,n} (21)

2. 'Y is parallel displaced along u, if and only if

dyi . du
— +w;kd%yk =0 forall ie{l,..,n. (2.2)
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Proof. Let _
_de _du O ;0
Codt dt out T o

denote the tangent vector field of x.

1. We use the properties of the connection D and find

) 0 Tk o 0
DT = D Tk — TiD Tk =T =" +TkDp , ——
r Tl ( DuF ) o ( auk> (aw ok " aijauk>

oud
L (OTF 0 3TZ , 0
= J R — k ’L .
T <8uj auk T ) < 1 wjk) ou’

du 9T dTl 0
S N L = L TIT*
< dt oul Tk > ou’ < dt ik > out”

Thus, the claim follows since (9/0ul, ...,0/0u™) form a basis for each tangent space.

2. Using the same arguments as above and the representation

-0
Y=Y"—
out
one finds
0 , 0 oYk o 0
DrY = D y* =T'D Yk =T/ =——=——+Y"D s —
T T]auj< 8k> ai]’( 8’“) <8Jak+ 8i]8k>
oYk 9 o) L (OY! o)
= - - — 77 k
v (aw g+ Y kg, > T (aw Y )az
du’ 9Y'? — 0 ay’ . 0
_ (v or i Tiyk = i TIYR :
<dt o ik ) ou' < g Tk ) ou?’
the desired representation. ]

Definition 2.14. In the sequel, we call equation (2.1) the geodesic equation and equation (2.2)
the equation of parallel translation.

Lemma 2.15. Let M™ be a manifold, D a torsion free connection on M™ and (u',...,u™) be
local coordinates for M™. Then

w§k = w,ij
for all i, j,k € {1,...,n} with respect to (0/0ul,...,0/0u™).

Proof. Let X,Y be tangent vector fields on M™. We know that the i-th component of the Lie
bracket is given by

: Y OX?
XY =X1— —yI=—
X, Y] ou’ oul
and that
(DxY = DyX)' = (Dy,xiOkY"* = Dy yiOp X*)" = (X7 Dy, 0,Y" — Y7 Dy, 0, X*)'
oYk ox*k ‘
= <X988k + X7Y* Dy, 0), — Y7 S _0, — X*YI Dy, ak>
QY e OX!
= X' — + XIvkut, — v — XMy

ouJ J oul
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Thus, one finds after changing indices
0= Xij(W;‘k - wlivj)v
and therefore, w;-k = wij for all i, 5,k € {1,...,n}. O

Remark 2.16. Due to the result of Lemma 2.15, torsion free connections are often called
symmetric since its coefficients are symmetric in the two lower indices. In the sequel, we will

prefer the term torsion free for such a connection.

Definition 2.17. Let M™ be a manifold with a connection D, U C R, x : U — M", x = z(t)
be a curve, Y € V(M"™) and T € V(M") such that T' = dx/dt along x. Then we set, along z,
D DY

Y J—

2y .= =2 .= D;Y.
dt dt r

Lemma 2.18. Let M™ be a manifold with a torsion free connection D, U C R? open with
coordinates (u,v) and x : U — M™ be twice continuously differentiable. Then

D (00\_D (0

ou\dv) ov\ou)’
Proof. At first, we choose local coordinates (y!,...,y™) of M™. Then we know that dz/0u =
(0y'/0u)d/dy* and Oz/Ov = (9y? /0v)D/dy’. Consequently,

D (ox\N _ 5 (O 0N _ Oy, (O D
ou \ v - s 327,’ ov oyl ) Ou a%i Ov OyJ

oyt [ 0%y 0 oyl 0
Ou \ Oy*dv 0y?  Ov a7 \ Oy’

0%yl 0 oyt oy’ . 0

Dudw 0yl | ou v I oy

and since D is torsion free, wfj = wﬁ Hence, the last expression is symmetric in u and v,

which prooves the claim. O

Lemma 2.19. Let M™ be a manifold with a metric connection D, z(t) a curve in M™, U,V €
V(M™) and T € V(M™) such that T' = dx/dt along x. Then, along x,

d DU DV
— (U, V)=(—/—,V U — ).
dt<’> <dt’>+<’dt>
Proof. From the characterization of tangent vectors to a manifold as differential operators, we

know that T(U, V) is the directional derivative of (U, V) in direction T', therefore T(U,V) =
d/dt(U,V) along x. Thus, using definition 2.17, we find

% (U, V) =T (U,V) = (DrU,V) + (U, DyV) = <Zf,v> 4 <U, Z};>

since D was assumed to be a metric connection. O
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Theorem 2.20. Let M™ be a Riemannian manifold with metric (-,-). Then there exists a
unique metric and torsion free connection V : V(M™) x V(M™) — V(M™). This connection is
given by

(VxY,Z) = (XY, Z) + Y{(Z,X) — Z(X,Y) = (X,[Y, Z]) + (Y, [Z,X]) + (Z,[X,Y])) (2.3)

N =

and with local coordinates (z?, ..., x™),

i 1 (995  Ogu  Ogjk
Yik = 99 (833; T T (93?5 (2:4)

with respect to (9/0x!,...,0/0z™).

Proof. First, we show the uniqueness of such a connection. For this case, let V be a metric
and torsion free connection and X,Y,Z € V(M™). Then

XY, 2)+Y(Z,X)—-Z(X,Y)
= <VXy, Z> + <Y, VXZ> + <VyZ, X> + <Z, VyX) — <VzX, Y> — (X, VzY>
= 2VxY,Z)—(Z,[X,Y])+ (Y,[X, Z]) + (X,]Y, Z))

which proves the claimed representation using [X, Z] = —[Z, X|. Hence, such a connection is
unique.

Now, define for each fixed X,Y € V(M™) the smooth covector field o such that «(Z) for
Z € V(M™) is the right-hand-side of equation (2.3). Then a(Z) is R-linear in Z. At each point
p € M" the tangent space T),M" is finite dimensional and

i TyM™ — TyM™, i(u)(v) = (u,v)

is an injective linear map since the Riemannian metric (-, -) is nondegenerate; hence, i must be
an isomorphism and 7,y M™ can be identified with T, M" via i. Now, a € Ty M™, and therefore,
there exists a unique vector A(p) € T,M" such that a(Z(p)) = (A(p), Z(p)). Consequently,
there exists a unique vector field A € V(M™) such that

a(Z) = (A, Z).

In deed, A is smooth since « is a smooth covector field. We then set VxY := A and have
to show, that this defines a metric and torsion free connection. At first, R-linearity is clear
since the right-hand-side of equation (2.3) is linear in X and Y. Furthermore, observe that for
fe=(Mm),

(Vx(fY),Z)
= %(X<fY7Z> + [Y{(Z,X) - Z(X, fY) = (X, [fY, Z]) + (fY,[Z, X]) +({Z,[X, fY]))
= [VxY.Z)+

= f(VxY,Z)+

(X (NY, 2) = (X, Z())Y) + (X, Z())Y) + {2, X(£)Y))
X(NY, Z).

N

—~
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Thus V defines a connection on M™. Finally, equation 2.3 yields

(VxY,Z) +(VxZ)Y)

= S(XY.2) 4 Y(Z,X) ~ Z(X,Y) — (X, [V, Z]) + (Y, [Z, X]) +{Z,[X, V)
+ é(X<Z,Y>+Z<Y7X>—Y<X72>—<X3[Z,Y]>+<Z,[Y,X]>+<Y,[X7Z]>)
— X(Y,7)

and

(VxY,Z) — (Vv X, Z)

= S(X{Y,2) 4 Y(Z,X) ~ Z(X,Y) — (X, [V, Z]) + (Y, [Z, X]) +{Z,[X, V)
- %(WX Z)+ X(2,Y) = Z2(Y, X) = (V,[X, Z]) + (X, [2,Y]) + (Z, [V, X]))
= (XY}, 2),

therefore, V is a metric and torsion free connection.
It remains to show the formula for the coefficients w;k For this case, we consider a patch
U, the k-th coordinate curve z* and vector fields X,Y € V(M™). Along this curve,

0 0 . . o
X 9.V
9k (X,Y) = 9k (0; X',0;Y7) = o

and

oYy

dg; 0X?
(g5 X'YT) = 2L XY T 9ii 5k P Y7 +9wXZa r

ak

= <Vak8X28YJ> + (X" Vp,0;Y7)
oY
oz
0X S 3yj
= (0;,0;) = Yﬂ (O1wly, 0,) XY +(8;,0;) X" ook

Ok
oX'? oY
9ij A Ok Y7 +gz]wkZX 'y +gUX1 +gzzwaX iy

8k

_ <8X o, +leakaz,a YJ>+ <ain Ny sy vaka>

+ (0, 8lwk]>X’Yj

Since V is metric, we have

9gi
8:1;] = gljwkz + gllwk]

Moreover, we know that w;»k = w};j for all 7,7,k € {1,...,n} since V is torsion free. Now, we
find

9915 | 99 9gjk ; ; ;
(%z 90 On = giwhy + Gk Gaw + ki — Gikwl; — 5wl = 201wk,

which finally gives

Wik = oxk " 9z Ox

; 1, (0q,; O 9,
i 5912 ( 95, 09k ng>
and finishes the proof. O



2.1. TOOLS FROM DIFFERENTIAL GEOMETRY 11

Definition 2.21. The connection V characterized in Theorem 2.20 is called the Levi-Civita
connection and its coefficients, from now on denoted by F?k, are called the Christoffel symbols.

Definition 2.22. Let M" be a Riemannian manifold with metric (-,-) and C' a curve in M".

A wariation of the curve C is a twice continuously differentiable map
[0,L] x (=1,1) — M™,
x
(s, ) = x(s, ),

where x(s,0) is the parametrization of C' and L the length of C'; moreover, we demand that s
is the arc length parameter for C.
We define the arc length functional

By = [ (), Ortonc) >% s,

which is the length of the curve z(-, a).

Proposition 2.23. Let M™ be a Riemannian manifold with metric (-,-), V the Levi-civita
connection, C' be a geodesic in M™ and x(s, ) be a variation of C' such that x(0,a) = x(0,0)
and z(1, o) = x(1,0) for all « € (—1,1). Then

L'(0) = 0.

In other words, a geodesic is a critical point of the arc length functional for variations which
keep the endpoints fixed.

Proof. Let x(s,a) be a variation of a geodesic C' in M™ such that z(0,a) = x(0,0) and
z(1,a) = x(1,0) for all @ € (—1,1). At first, V is a metric connection and Lemma 2.19 yields

9 02 g\ /¥ (o) 0

da \ds' ds /| Oa \ 0s /)’ 0Os
0 [or gr\ [V (0r\ 25\ or ¥ (00
ds \da' 9s/ \9ds \da )’ Os Oa’ Os \ Os '

In addition, V is torsion free, hence,
Y (2)- 2 (2)
Oa \ Os 0s \ D
due to Lemma 2.18. Together, we deduce
1 [ /ox 0z\"2 9 /Ox Ox
L(e) 2/0 <aa> aa<as as>d5
- LG G ()5
0 fJe
- ) (G () s
0 Js \ O«

and

N

ds

=
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Now, s is the arc length parameter for z(-,0); consequently,
L/v (0x\ Ox
/ _ I el Rded
Loy = /0 <88 <8o¢)’83>
_ /L 0 [0z dx\ [Ox V [Or\\N
—Jo \0s \0a’ s da’ ds \ ds N
ox Ox Ox ox Loz V [0z
- (0. Fa0) - (G o) - [ (555 (5))as

L/ oz
- [ {Z v
/0 <8a’ T >d8
p— 0

if T'e V(M™) with T'= 0xz(s,0)/0s along C' denotes the tangent vector field along C'. O

2.1.3 Shape Spaces

Generally, a shape space is a set whose elements can be identified with geometrical objects,
like smooth surfaces, polgons and so on. This definition (or better characterization) includes
now a large variety of such shape spaces, which may be finite-dimensional as well as infinite-
dimensional.

In contrast to geodesics and parallel transport on manifolds, the concept of shape spaces is
a more recent topic of modern research, with a focus on theoretical issues (e.g. [6]) as well as
geometric applications (e.g. [4]). First, we will have a short look at different shape spaces and
the corresponding practical applicability for certain geometric problems. Finally, we introduce
some notations which will be used in the sequel, and we reformulate the geodesic equation and
the equation of parallel translation for practical reasons.

Some typical examples for infinite-dimensional shape spaces together with possible Rie-
mannian metrics are studied by P. Michor and D. Mumford in [6]. They consider, for example,
the set

S; := Emb(S', R?)/ Diff (1)
of the manifold of C* embeddings of S! into R? modulo the group of C*° diffeomorphisms of

S!. For sure, one could also work just with Sy := Emb(S*,R?), but then there are different
elements in S which would be identified with the same object. Consider for example

Z, _{Slz[O,Qﬂ — R2, 4 .{515[0,27@ — R2,
e — (cos(¢), sin(¢)) o > (sin(g), cos(9))

which are different elements in Sy but correspond to the same point set in R?, the unit circle. To
overcome this ambiguity, one usually has to deal with quotient spaces. In our example, i and iy
belong to the same coset in S; since 47 and iy are just two different parametrizations of the unit
circle in R? — and such reparametrizations are identified with each other in S;. Furthermore,
the authors show that one may also consider the shape space &3 of all unparametrized C*

simple closed curves in R?; more precisely, they claim

S3 = Emb(S*, R?)/ Diff(S1).
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In contrast to the shape spaces described above, which are mainly of theoretical interest, let
us now consider some finite-dimensional shape spaces. In [4], M. Kilian et al. study geometric
modeling tasks, such as shape morphing and deformation transfer, using the shape space Sy
of triangular meshes in R® with a fixed connectivity graph and a given number of nodes.
Clearly, S; can be identified with R3" where N denotes the number of nodes. Recall that the
connectivity graph of a mesh in R3 is the graph which describes the neighbourhood relations of
the nodes. The task is then to equip S4 with a useful Riemannian metric, which is in general
different from the Euclidean inner product in R3*V. The choice of the metric depends on the
problem and the desired result. If a shape, i.e. a triangular mesh, should be deformed into a
certain way but preserve all the pairwise distances between two points, then one will look for
a Riemannian metric which strongly penalizes non-rigid deformations. In detail, the metric
should yield a geodesic in Sy, which consists of shapes being as-rigid-as-possible transformed.
In a similar way, they introduce an as-isometric-as-possible metric

<X’Y>] = Z<Xp —Xg,p— Q><}/p —Yyp— q)
(p,9)
on S;. Here, M € Sy, X,Y € TSy and (-,-) denotes the Euclidean inner product in R3;
moreover, the sum is taken over all edges (p, ¢) of the mesh M. Per definition, a deformation
of a surface is isometric if and only if the distances measured on the surface are preserved during
the deformation. For triangular meshes this is equivalent to the fact that the length of each edge
remains constant. If there are no isometric deformations except translations and rotations, we
have to deal with deformations being as-isometric-as-possible. And exactly these deformations
yield shorter distances in Sy, if one uses this metric. Consequently, the resulting geodesic
joins shapes in Sy which are as-isometric-as-possible transformed; see [4] for further details.
However, the as-rigid-as-possible and the as-isometric-as-possible metric are only Riemannian
pseudo-metrics, since a rigid body motion, respectively an isometric deformation, has norm
zero. To obtain a Riemannian metric, one may add a small regularization term like a multiple
of an L?-type metric
(X, V)= wy (X, 1)
pEM

where w),, denotes the area of the triangles adjacent to p. This is done in [4] and the result,
which is obviously a Riemannian metric, then reads

(X, V)= (X, V) + A\ X, Y)E

where A € R+g.

Furthermore, one could also consider the shape space Ss of all quad meshes with a fixed
connectivity graph and a given number of nodes. But Sy is in some sense very similar to
Sy, since the only difference is the changed connectivity. Hence, the essential ingredients for
a shape space of meshes (with a finite number of nodes) is the connectivity graph and the
number of nodes, which are both the same for all meshes.

For our studies on shape optimization in the context of Riemannian geometry, we shall
always consider the shape space S of triangulated meshes embedded in R? with a fixed con-
nectivity graph and a given number of nodes N. These surfaces may be either the boundary
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09 of a subset Q C R? with finite volume, or the graph of a function from R? into R. For a
shape M € S we will use P C R? to denote the set of all nodes of M. For sure, M and P refer
to the same object, the triangular mesh, but from different perspectives; on the one hand, M
describes the mesh as an element in an abstract shape space, whereas P characterizes the mesh
as a finite subset of R3. We also use the notation A (p) for the set containing p and all nodes
of M which share a common edge with p, and 7 (p) for the set of all triangles of M which have
p as a vertex. Moreover, we define C C P? as the set of all (p, ¢) € P? which are neighbouring
points.

We explained above that S can be identified with R3Y. But depending on the problem,
one will use special Riemannian metrics to endow the shape space & with a certain geometry.
Subsequently, we will also introduce Riemannian metrics on § which are different from the
Euclidean inner product in R3V. Strictly speaking, these metrics have to be defined on each
tangent space ThsS for M € §; this will be done in the next section.

However, we will restrict our admissible deformations of a triangular mesh to those which
are normal to the surface, in detail, every node p € P may only be moved along the local
surface normal vector n, € R? . Consequently, our deformation fields are given by

(Xp)pep = (Kpnp)pep € TuS (2.5)

with x, € R. Since a deformation of a mesh M € S is a curve in S, we only consider curves
in S whose tangent vectors are given by (2.5). Hence, we do not consider all possible tangent
vectors in the 3/N-dimensional tangent space T3S but only those described ones, which are
contained in an N-dimensional subspace of Tj;S. Therefore, all the admissible deformations
of a surface M € S are uniquely determined by the vector & := (k,)pep € RY. Now, we have
to define properly the normal vector n, € R3 of a triangulated mesh at a vertex p € P. We
decide to define it the following way:

-1

> (t2—p) x (ts—p) (2.6)

teT (p)

np =

> (t2—p) x (ts—p)

teT (p)

where the vertices of all triangles in the mesh M are indexed in the same counterclockwise
orientation, p = t; for all t € T (p) and || - || denotes the Euclidean norm in R3. Note that (2.6)
is a weighted average of the normal vectors to the triangles adjacent to p. In detail, the normal
vectors of those triangles are more involved, whose area is large. This is the case, because we
first sum over all normal vectors around p and then normalize the resulting vector. However,
we could also have taken the sum of all normalized normal vectors and then normalize again
but this would require more computational effort and ignore the area of the triangles around p.
Below, we will often use the notation 7t = (np)pep € R3Y for the concatenation of all normal
vectors n, with p € P.

Let us now formulate the geodesic equation within this setting. For this case, we assume to
have a Riemannian metric on the shape space S; then, due to Theorem 2.20, we may consider
the Levi-Civita connection V with its coefficients Flﬁ — the Christoffel symbols. Now, from
Proposition 2.13, we see that we can easily reduce the geodesic equation to the following system
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of first order differential equations:

{uv =T,

2 B a¢

7 = -T7,T°T",

where (u”)yeq1,... 38y = (P)pep is just a different notation for the concatenation of all nodes
p € P to a vector in R3V. Since we only allow deformations along the local surface normals,
we also have p = k,n, € R3 and, hence, T = 7.7 € R3 where - stands for the scalar

multiplication of the corresponding entries of ¥ and 7i. In a similar way, one may rewrite the
equation of parallel transport from Proposition 2.13 as

X1 =T XT"

where X is the parallel translate of an initial vector fo, tangent to the shape space S, along a
geodesic u with tangent vector T. Again, we are only interested in tangent vectors X which are
locally given by X,, = A\,n, and, therefore, read X =X-7ieR3, However, it is not clear up
to now that the geodesic equation or the equation of parallel translation admits solutions, for
which T' = & - fi, respectively X = X-1 holds. For sure, we know from the Theorem of Picard
and Lindelof, that both differential equations have unique solutions at least within a sufficiently
small time interval I. But we do not know whether this solution is in these N-dimensional
subspaces of TS for all ¢ € I provided this is true for the initial data. Nevertheless, we
shall see in the next sections that we are able to show the unique existence of such solutions
via deducing an explicit formula for %, respectively A. This works at least for those metrics
which we consider, if we accept a slight approximation at some point.

2.2 Riemannian Metrics

We now introduce some Riemannian metrics on the tangent space TS to the space of trian-
gular meshes S in some shape M € §. We start with the definition of the metric and deduce
the inner product of two canonical basis vectors of R3%.

Let us begin with the Euclidean metric

(X, V)P = Z@my{n)

peP

where X = (2,)pep, Y = (Yp)pep € TS with x,,y, € R3. So far, the metric is defined on the
whole tangent space at M € S. Specifically for N1 = (kpnp)pepr, N2 = (Apnp)pep € TuS we
obtain
<N1,N2>Eu = Z Iﬁip)\p.
peEP

Obviously, this is a very simple metric for vectors which consist of local normal vectors. Let
now e; € R3Y be the vector having zeros in all entries except in the i-th component of the part
corresponding to p € M. Then, one immediately sees from the definition of the metric that

<e;n 62>Eu = Opq0ij
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where 0. denotes the Kronecker-Delta. In addition, it is obvious that (-, -)®* actually defines
a Riemannian metric (not only a pseudo metric) on the shape space S and, consequently, no
regularization is necessary.

Another possible Riemannian metric on the shape space S is the H"-type metric

n Tp— T Yp — Y,
(X, V)= ) <p"2,p q><pH‘ﬂl,p q>

(oo p

for n € N, X = (zp)pep, Y = (Yp)pep € TS and vectors z,,y, € R3. We shall emphasize
that the notation is motivated by Hdélder type estimates, and not by Sobolev spaces. Since
the right-hand-side only defines a Riemannian pseudo-metric, we write (-, >51 " and define the
H"-metric via the following regularization of (-,-)i" with p € Rsq:

(X, V)= ) <H,p q> <m,p— q> +p Y (T yp).

(p.g)EC peEP
A special case in this general definition is n = 0; this is the so-called as-isometric-as-possible
metric, which has already been discussed in subsection 2.1.3. However, the idea behind the
H"™-metric is to adopt the as-isometric-as-possible metric in such a way that small distances
between two points, and therefore also nearly singular triangles, are penalized more. But
although this inner product is able to prevent the local contraction of several points to one
point, it is still possible that self-intersections of the surface occur in the process of deforming.
This is not surprisung since the metric only takes the distances from one point to each of its
neighbours into account and two not neighbouring points may still become arbitrary close to
each other. Now, we are interested in deformations of a shape along its local surface normals,
hence, we also state the special form of the metric

n KpMp — KgNl Aplip — Agnt
(N, Ny = <pp_qq,p—q>< —al P q>+pznp

n
(reC lp —qll lp— =

with N1 = (kpnp)per, N2 = (Apnp)pep € TS and ny, the local surface normal at the point
! ey € R¥Y with p,ge M
and i € {1,2,3}, we have to distinguish whether the two vectors have their non-zero entry at

p € M. To obtain the inner product of two canonical basis vectors e!

the same point p or at different points p and ¢q. From the definition of the H"-metric, it is
clear that (e, eé)H " = 0if p and ¢ are not neighbouring points. Thus, the two cases ¢ = p and
qge N(p )\{p} remain, where N (p) is the set of neighbouring points of p. The result directly

follows from the definition and is given by

H" ' —a)P —¢)
(eep)” =Pt D lp — q||*™
qeN (p)\{pr}

and

=TT o g € N\ ),

For our purposes the Riemannian metrics introduced above are sufficient, since we will also

(e €h

have a closer look at the differences between these metrics in applications.
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2.3 Geodesic Equations

Now, we will establish the systems of geodesic equations which correspond to the above metrics.
For this reason, we manipulate the generic geodesic equation in such a way to get rid of the
Christoffel symbols, but we will see that for the H™-metric we have to make an approximation
at a certain point. Consequently, the resulting approximate geodesic equation is quite cheap
to evalute but, in general, it is not exact any more.

We start with a triangular mesh M € S which has N nodes in R?; the collection of these
nodes is denoted with P C R3. In subsection 2.1.3 we stated

{uv =77,

20 SRR ne

7 =T} ,T°T7,
where M is characterized with a vector v € R3V. In addition,

T=rkAeR™N and T=f i+rk-neRN
where & € RV, i € R3N and - stands for the scalar multiplication of the corresponding entries
of # and 7i. The aim of this section is to derive a formula for each kp with p € P using the
system of geodesic equations.

Independent from the chosen metric, we can do the following calculation. Let (-, ->S denote
one of the Riemannian metrics on S defined above and

- (0T T T AT T\T 3N
ity := (Ogs, ..., Ogs, 1y , Os, ..., Ogs)~ € R

be a vector with all entries zero except at those components which correspond to the point
p € P. Then we get

e

Su

iR S S s\S
tRey) = (—e Tl Ty ) = (e T, TT", esiih )
= —{ey,e5) T, TT i) = =T 59,5 T T 7
_ 1 <3gaa dgps 39a5> o9

2\ ouf " due oud

N

3 3 k m Lk L .m
ofex ety el el Oe,,el)
k Tle P’ q ropl qQ T
Z::np Z Z q-r orm aql 3pk

k=1 greN(p)lm=1

where the last equality holds true since both metrics, (-,-)** and (-,-)#" are local in the sense
that they satisfy (e, e}) = 0 for all i, j € {1,2,3} if s,t € P are not neighbouring points. The

task is now to calculate A = A(p, q,r, k,l,m) for the different Riemannian metrics.

. In this case, A = 0 since (¢!, el)F

u LT
o = Opgdij is a

At first, we consider the metric (-,
constant independent of the coordinates of p and ¢q. Moreover,

e

il

+ R

S

FEu
7ﬁp> = ’{p<np7np> + Hp<7ipa”p> = Kp
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and therefore, the system of geodesic equations for the metric (-, -)F* reads

kp =0,

{p. = e (2.7)

for all p € P. This pair of equations describes the deformation of a surface along its local
normal vectors where k, the speed of the deformation, remains constant.

Next, we come to the more elaborate calculation of A for the H™-metric. For this reason,
we distinguish four cases where the calculations are quite trivial but, nevertheless, require some
concentration. So let p € P, ¢, € N(p) and k,l,m € {1,2,3}.

Case 1: gq=p AN r=np:

4 ! k k k k ! l m m
— S — S — S — S — S
A = G ) = 2n T Oim = o 2”(p > 225?2 ) +
NN} Ip — sl lp — sl lp — s
k_ Gk mo__ .m m _ om\(nk _ K\l _ ol
Omi Z = 82n - 5klp s2n - 2”(p S 22+)2(p 2
NN} lp — s lp — s [p — s
mo_ gm l_Sl l_Sl mo__ gm k_Sk
DR e R e o )ﬁﬁ—s\%gp )
seN(p)\{p}
oy D L A (et ) Gt D (At )
=2 2 (o Ip — s|[Z*+? ‘
seN(p)\{p}
Case 2: q=p N r#p:
O et D it P (k) |t 0 N
=2 T =l Ip — r[2n+2
P il P S e P et |V et (Vo I
m.
lp — " lp — " [p — 7|2 +2
P R S e AP (10 [k |V k)
m
lp — 7" [p —r|*" [p — r|?n+2

ph—rt =) =™ — ™)
—2( om on 2n+2 :
lp— 7|l lp =
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Case 3: ¢#p N r=np:

A - —g P-4 - A S e Gk D[k O I
lp — qlI* lp — gl [p — q|*"+2

P A N Gl A W [ O I
lp — qlI*™ lp —qll*™ p — ql|?"+2

5 P=d P R ") @' — )" — ")
Ip — ql> Ip —ql*" Ip — q|?+2

_ <5lm A AN e et S L qm)) _
lp — qll*™ Ip — ql|?"+2

Case 4: ¢ #p N r # p: Now we consider the following two cases.

Case 4.1: g =1:

1 k_ _k k_ k 1 m o . m
A = G PO g, o, P = a) (P q22(+192 ") .

lp — 4l lp —qll lp—qll
P"—q" =g =" - -d)

Mgz T O g T 2" o — a2

P p-d =)@ =a"0 - d)
Ip— ql|*” "Flp — g2 lp — ql|?+2

_ofs P =M@ )™ — ™)

=g " Ip— gl +? '

Case 4.2: g #1:

A=04+0-0=0.
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Now, we use these expressions for A and find

3

3
Yo Y Y mA ek

k=1 qreN(p)lm=1

_ sk 3 E kNl dN(m _ om
Tl P —n Tsz(P s¥)(p' —s')(p s™) 4
p pHp_S”Qn Z: p—p ||p_SH2n+2

ki=1  seN(p)\{p} (
3 ! l m m
n TZT,,l, p —7’ Tle p -r )(p —T)(p - )

Z Z ( Hp rHQn Z Hp _ 7.H2n+2

reN (p)\{r} )
it P —d" ZTsz - 4" —ql)(pm—qm)> B

_|_

k

p

k

b2 lp — ql|?m+2

3 k(L 1N/ m m
K ;=g m (08 =) — ) (™ — q™)

Yok S (e Y

3
_ k P —q % Il %
- Z p Z Hp qH2n< <Tp) +20,T, - (Tq) -

]

TPp— g2

b —q m
= S (s s iy i)

3 k_ Kk 3 9
- an; Z ||z q(|]|2n (Z - (Tzlﬁ - Té) +
= e =

”Z”p —q Z(pm_qm) (Té_qu> (Tzln_Tqm)>
m=1

p—q|?
k k 2
k pF—gq < o p—q.T,—-1T,) >
= Y n LT (1~ T2 +n
IR =gz 17— Tl FEE

k=1 qeN(p)\{p}

_ /., p—a ( P-aTp— T,)* 2
- < St (T - m T”>>

a€N(p)\{r}

where (-,-) denotes the Euclidean inner product in R3. The last step to obtain the geodesic
equations in the shape space S for the H"-metric is to manipulate the left-hand-side of the

equation

-

S

. I{n
N p—q (p—q, T, — Ty)?
Ry =<”p’ 2 P <” woap Tl

eNong P~

in such a way to get an explicit formula for £,. But to achieve this we have to make an
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approximation at some point.

. — 5 H"
3 3 H 3 "
— < Z /fqn + an ) €q Zn%€%> - Z Z an + an )n% <€q’egj>
qepP i=1 =1 o
3 - -7
. o ' —a)’ — )
= X Gomprin)nd (e 3 Tl
=, 1N G\ )
3 . (=) = ¢
Z (Feqniy, + Kqng,) L ’pq_)(;?’]’% z)

qeN(p)\{p} i,j=1

= p(hp(np,np) + Kp(np,np)) + Ky Z p= a2 Z n, P - -¢)+

N P~ q' =1
T > !~ - ) -
qu m\{pr} t,j=1
2 o — QH2” Z e O =) -
qeN (p)\{p} 4,j=1
> e > it~ )
qeN (p)\{p} i,5=1

In order to get rid of the &4, we do the following approximation:
kg~ Ky forall ¢qeN(p)\{p} (2.8)

Otherwise, we had to solve a band-structured linear system for i provided the system admits
a unique solution; but this might not be the case. However, we use a lumping method and
concentrate all coefficients of the system on its main diagonal. If we use that n, is normalized
and consequently (n,,n,) =1 and (n,,n,) = 0 for all p € P, we can further simplify the above
expressions to find

. HTL
(Reit it iy )

3
= piptip Y WZ(%—%)%@ ¢ —¢)+
qeN (p)\{p} ij=1
1 3 . S
Z o= gl Z (Kphy, — KqTig)n(p" — ¢") () — ¢’)
q€N (p)\{p} i,j=1
. . 1
= phkp T+ Kp Z W<np—nqap—Q><”p,P—Q>+
qeN (p)\{r}
1 . )
Z W("fpnp* KqTig, D — @) (Np, P — q)-

a€N (p)\{r}
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Now, we deduce

. p—4q
Kp p+<np7 Z <np_n(17p_Q>> =

_ 2n
senngpy 124l

p—q (p—q,T, —Ty)* . .
<npa Z <n L i <"€pnp — RgNg, P — Q> - HT;D - TCIHQ

— gll2n —all2
el lp = ql

and in the case that the left-hand-side is not zero — which is the case if p € Ry is sufficiently
large — we have

— —q,Tp—T4)? . .
<np7 Z ”pllqﬁZn (n P ‘t‘lp_qu2q> - <"<5pnp — RqNg, P — q) — ”Tp - Tq||2)>
geN (p)\{r}

/ip:

p+<npa > pp_;q2n<np_nqap_Q>>

aeN (p)\{p}

Finally, we are able to state the system of (approximate) geodesic equations in the shape space
S for the H"-metric, which is given by

P = RpNp,

2
mp Bt (n O ey g 0-0) - Ty
. < pqu(p>\{p} HP—QH2" Hp—QHQ PP e P a (2.9)

p+<np, 2 Hp;{:;‘(‘gn <npnq’pQ>>
geN (p)\{p}

for all p € P.

2.4 Equations of Parallel Transport
The next task is to derive an explicit representation of the equations of parallel translation.
For this case, let u(t) be a geodesic in the shape space S, T'(t) be the field of tangent vectors

to the geodesic, M € S a triangular mesh with N nodes and P C R? the set of all nodes of
M. Then we know from subsection 2.1.3 that

X7 = -T7, X7

defines the parallel translate X along the geodesic u of an initial vector Xy tangent to S. Here,
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T=£k-neR¥W,

— - —

X=X-7cR®» and X=X-ii4+r-7icR¥

where g, X e RY and 7i € R3V. Again, - stands for the scalar multiplication of the corresponding
entries of K respectively X and 7i. The following steps towards a formula for each Xp withp € P
are at some points quite similar to the calculation of the geodesic equations, hence, we will
discuss analogous manipulations only briefly.

Let (-,-)® denote one of the Riemannian metrics on S defined above, and let
~ T T T AT T \T 3N
fip := (Os; .- Ogs, 7y, Ops, ..., Os)~ € R

be a vector with nontrivial entries only at those components which correspond to the point
p € P. Then one finds

3.

+X-

Su

S S 5 S
) = (e T XOT qy ) = (e T, X TP, 5
= —(ey,e5) T X T R) = —T7 59,5 X “T7 R

1 (0gsa . 0935  OGap 56
- = - XoT
2 <6u5 ou®  Oul "'p

(-

3 3 kol m k 1 ,m
1 k 1o [ O%enseq)  Olesep)  Oley,erl’)
- _52% >, 2 X ( 8l;mq + aq = gpk 7

k=1 anEN(p) l,m:l

= A

where A = A(p, q,7,k,1,m) has already been calculated for the metrics (-, -)** and (-,-)1".

Since A = 0 for the metric (-,-)“ we immediately get the equation of parallel translation
for this metric,

Sue
3

+X-

S

Ay = <X- p>Eu =0 (2.10)

for all p € P. Consequently, A,(t) is constant for every p € P and X (t) = X sz(t) only depends
on all the normal vectors n, for p € P.

For the H™-metric, we proceed along the same lines as for the geodesic equations, which
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results in

3 3
ek S X A gk m)

k=1 q,reN (p) I,m=1

~ s xi P =@ = " = )
= _Z”p Z } prHp |2n Z T, — s|pPrt2 +

P

k 1 ! m m
l lp — l m —r)(p—r)(p -r )
X T -n E X 17 Ip — 2+

+

lp — q||?"+2

m=1

xiqt P4 _nZXsz(p’“—q’“)(pl —ql)(pm—qm)> _
= | P m (P =)@ — ™ — ™)
2 2 (Xqanp " ”ZX T e )
: k P l l
= Y > — (xh—x1) (T -1i) +
{r}
3
= ) (x4 ) o -

m=1

g X, — X, p— )T, — Ty, p—
D D o R e e e

_ 2n _ 2
o enong Pl Ip — all

_ <np7 Z b—q (n<Xp—Xq,p—q>(Tp—Tq,p—Q> _ <Xp_anTp_Tq>>>

— gl|2n — qllI2
Ny Pl lp = gl

where (-,-) denotes the Euclidean inner product in R3. Similarly to the considerations above,

we have to isolate X. We use the approximation from equation (2.8) and get

Lo o5 \HT . . 1
<)\’I’Z+)\ n, p> = P)\p+>\p Z W(np*nq,p*Q><np’p*Q>+
qeN (p)\{p}
1 . )
D g Mt = Aditasp = @), p — a).
q€N (p)\{p}

Analogously, one finds
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).\p p+<np7 Z H(”p_nqap_Q>> = <npa Z P 1

lp — ql*” lp — q||?"

€N (p)\{p} qeN (p)\{r}
X, —Xgp—){(T, —Ty,p—q . )
<n< : : ||p_><quz : ) — (Aplp — Aqig, p — q) — (Xp_Xqup_Tq>> >

and if p € Ry is large enough, we arrive at
-1
i p—q pP—q
b= (pr (o & )| (e 3
7N (p)\{p} a€N (p)\{p}

(n (Xp — Xg,p— (T, — Ty, p — q)
lp— qll?

—
—
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— (Mphp — Agig, 0 — q) — (Xp — Xg, T — Tq>> > (2.11)

for all p € P. All together, the parallel translate X (t) = A(t) - 7i(t) € TS of a tangent
vector Xg = XO . T:z(O) € Ty S along a geodesic u in the shape space S can be calculated from

Xo together with the above equations for X(t).






Chapter 3

Application To Shape From Shading

The basic idea behind Shape From Shading (SFS) is the following: Given a shading image
of a surface, i.e. an image of the surface which is illuminated in a certain way, we want to
reconstruct this surface. Generally, the shading image is given as a gray level image and the
underlying surface is interpreted as the graph of a function F : D C R? — R where D C R?
stands for the set where the shading values of the surface are prescribed. Moreover, we may
choose a coordinate system (z,y, z) of R3 such that the direction of the observer coincides with
the negative z-direction.

The first method to reconstruct the surface structure from a shading image was presented
by Horn in [2]. His idea is to determine several paths on the surface which start from a
set of points (z,y, F(x,y)) where F(z,y), Fy(z,y) and Fy(x,y) are given. These paths are
called characteristics. In order to get an impression of the resulting shape, one may calculate
various characteristics which are close enough to each other. In detail, Horn suggested to
choose a small curve around a local maximum or minimum of F'; this curve serves then as
the set of initial points for the characteristics. Around the extremal point the surface can be
approximated with a concave or convex parabola. Hence, we can calculate F(z,y), Fy(x,y)
and Fy(x,y) approximately, if we can estimate the curvature of the surface at the extremal
point. Finally, one arrives at a system of five ordinary differential equations for z, ¥, z, p and
q where z = F(z,y), p = Fy(z,y) and ¢ = Fy(z,y). However, it may happen that the resulting
characteristics are restricted to a certain region on the surface. Generally, these regions are
bounded by various types of edges, e.g. discontinuities of VF', view edges and shadow edges.
For further details see [2] and also [5].

Within the last decades further approaches have been proposed. An overview of these
methods and their applicabilities in diferent situations is given in [8]. The authors of this
paper divide these methods into four categories. The first one contains algorithms which
propagate the information about the surface from a set of points over the surface. Horn’s
approach described above is a special propagation method. The second category is made of
those algorithms which minimize a certain functional. Such a functional involves in general a

27
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Figure 3.1: The (negative) direction of the incident light [ together with the normal vector n,,
at a point p on the surface M.

data-fit term and a certain regularization term. The following constraints, which may serve
as possible regularization terms, are often used in the minimization process. Such constraints
may enforce a smooth surface, or a surface for which F}, = Fy,, or a surface whose shading
image has the same intensity gradients as the given shading image. Thirdly, there are some
algorithms which assume a certain local surface type. In this case, the reconstructed surface
is approximated with patches which have a prescribed geometrical shape. In [8], an algorithm
is presented which locally approximates the surface with spherical patches. Finally, the fourth
group of algorithms uses a linearization of the reflectance function

R_{D — [0, 1],
Ny = R(F(a,y), Fyla,y)),

which assigns to each pair (z,y) the shading value of a given shape at this point. Generally,
R is a nonlinear function with respect to F, and F,. However, such a linearization makes
sense only if the linear terms in the Taylor series expansion of R dominate. Otherwise, the
reconstructed surface might have an essentially different topography as the underlying surface.

3.1 Objective Functional and its Gradient

Here, we choose an approach to the SFS-problem where we formulate a useful functional and
minimize it with appropriate optimization techniques. This functional shall be defined in such
a way that it attains, for a given shading image, its minimizer at a shape which is as similar
as possible to that shape from which the shading image is taken. For sure, we also have to
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use some apriori-informations to choose appropriate parameters for the functional as well as
for the optimization process; such parameters may control, for example, the smoothness of the
resulting shape, the step length of one optimization step or the Riemannian metric which is
used in the shape space.

In the sequel, we assume to have a gray level shading image of the shape which we want
to reconstruct. In addition, we consider this shape as the graph of a function from a subset
D c R? into R. Doing so, we choose a coordinate system (z,y,z) of R? where the z-axis
is the direction of the observer. Furthermore, I € R? shall denote the negative direction of
the incident light; see Figure 3.1. In the last chapter we introduced the shape space S of
triangulated meshes with fixed connectivity and a given number of nodes N. Within this
shape space S we will now obtain a mesh M which fits to the given shading image. Let also
P denote the set of all nodes of M and (sj)pep be the collection of the given shading values
at the points p € P. Moreover, we assume that the shading image is taken from a Lambertian
surface, i.e. that the shading value at the point p is given by the special reflectance function

R(p) = (np,1).

Now let us define a functional f which assigns to a triangular mesh a non-negative real
number; this number should be small, if the shading image of the mesh approximately coincides
with the given one, and large otherwise. But f should also penalize meshes which are far away
from being smooth, hence, we will add a certain regularization term to the data-fit term. Since
S can be identified with R3", we may define f : R3V — R via

()= 53 (P = 53) + 5 32 mg(P) — ny(P)?

pepP (pg)eC

with @ € R>o. First of all, the data-fit term measures differences between the given and
the current shading image of the mesh M with nodes P. But the regularization term with
its weight « also takes the difference between two neighbouring normal vectors into account;
therefore, the functional f “prefers” meshes which are more smooth in the sense of mildly
varying normal vectors. In general, such a regularization is necessary since the given shading
image only determines the inner product (n,,[) at every point p € P but not n, itself; thus,
without any regularization of f, the minimization algorithm might find a mesh which perfectly
fits to the given shading image but has many spurious edges, when compared to the original
shape. However, if « is chosen too large, then the minimization algorithm will not be able
to reconstruct an edge which actually appears in the original shape. But this is a well-known
problem within the context of inverse problems in general.

In order to minimize the function f using a sensitivity based optimization algorithm, we
need to calculate its gradient V f. Therefore, we have to find all the partial derivatives dn,/ ork
for p,r € P and k € {1,2,3}. Let p € P, then

=

= Y (=) xts-p) | [ Y 3 ((s2-p) % (53— 1) (t2 =) x (s~ 1))

teT (p) s€T (p) teT(p)
= A =. B
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Let now r € P and k € {1,2,3}, then either p = r or p € N(r)\{r} or p &€ N(r). Above we
assumed that all triangles in the mesh M are indexed in the same counterclockwise orientation
and that p = t; for all ¢t € T(p); then ¢; denotes the i-th vertex of the triangle ¢. Now we also
use the notation t(t; = r); for the j-th vertex of that triangle ¢t whose i-th vertex is r; it will
be clear from the context which triangle ¢ is meant, so there will be no ambiguity.

Case 1: p=r:

g:,f = (Z —ekx(ts—p)—(tz—p)X€k>B

teT (p)

3

_ AB < Z Z <_€k 33—p)—(32—p)xek,(t2—p)><(tg—p)>
s€T (p) teT (p)

+ <(52 —p) X (s3—p),—ex X (t3 —p) — (t2 — p) X ek>>

= <€kX Z t2—t3>

- <6k>< Z 32—83 Z(tg—p)x(tg—p)>.

s€T (p) teT (p)

Case 2: p € N(r)\{r}:

Iny
ork

D

ol

X
/N

t(tg = ’r’)g — t(tg = T)Q)B

Case 3: p ¢ N(r):
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Now, we come to the calculation of df/0r*.

af <\ /Onp on, 0Ong
W = Z<<np7l>_8p><ark"l>+a(z <np_nq’8rk_8rk

peEP p,q)€C
L\ /on on
= Z ((np,l> sp) <8 ]f,l> + 2 Z <np Ng, 87’£>
pepr (p,.g)eC
L\ /Ony on,,
= Z ((np,l> - sp) W’l +a Z Z p — Mg, 5
pEP pEP qeN (p)\{p}
* 871
= Z<((np,l>—sp)l+a Z Ny — q’8’€>
peP a€N (p)\{p}
* 871
= Z <((np,l> —sp)l—i—a Z np—nq,a?f;> (3.1)
PEN(r) a€N (p)\{p}

where we used that dn,,/0r* = 0 for p ¢ N(r). Besides, we employ for an explicit calculation
of Of /Or* the formula for On,/Ork with p € N(r) obtained above.

Now, we are interested in the optimal descent direction for the function f. Since we only
consider deformations of the mesh M along the local normal vectors, we look for a descent
direction given by (k,n,)rcp. However, we have to be precise and explain in which sense the
descent direction shall be optimal. The usual gradient is for sure the optimal descent direction
in the shape space S with respect to the Euclidean metric (-, -)** — but in general not for other
Riemannian metrics. To obtain the optimal descent direction for a general Riemannian metric
(-,-)S, we have to solve the following problem:

\&.,

min 7 ((k)rep) = ez > o
6((I€T)T€P) = <'E

with J : RY — R and e : RN — R. The first order necessary optimality condition for this

Q‘J
311 3

311 w
Rl H

>5—1=0

problem reads

VI ((Er)rep) + X*Ve ((kr)rep) = 0, e ((kr)rep) =0,

with A\* € R, respectively,

3 8f
<Za7’knr> P+2)\ <<I{-n,n7> >reP_O7 </§.n,,§.n> =1.
re

k=1

If we use the Euclidean metric (-,-)5 = (-,-)Z% then we have (7 - i, 7, )% = k,, and

(8{;) , Moy + 2\ (ky)rep =0
) keq1,2,3) rep

for all r € P. Moreover, the second order necessary optimality condition yields A* > 0. If

consequently

A* = 0, then n, is orthogonal to (8f/8rk)ke{172,3} for each » € P. Hence, the directional
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derivative of f in the direction of each local normal vector is zero, and consequently, the
current mesh is a critical point of the function f. Otherwise, if A* > 0, then

oL (W> "
' 2% ork k€{1,2,3}’ v

Since A* is a constant, we may use the N-dimensional vector

(Fr)rep = << <§l€c)ke{1,2,3}7nr>>rep (3.2)

to characterize the optimal direction (k,n;,),cp to deform the mesh M.
In the case that (-,-)° = (-, )" with n € N, we use the approximation

kg~ Ky forall g¢eN(p)\{p}

In the same way, we proceeded in sections 2.3 and 2.4 to simplify a band-structured linear
system for the variables £, and to obtain an explicit - but approximate - solution. Here, we
follow the same lines and find

L 3 . \H" pP—q
</€-n,n,«>H = Ky <P+<np, Z Hp_qHQn<np_nq7p_Q>>>-

gEN (P)\{r}

Analogously to above, the second order necessary optimality condition implies \* > 0 provided
p € Ryg is sufficiently large. Moreover, A* > 0 unless the current mesh M is a critical point
of the function f. Therefore, the optimal direction for the H"-metric to deform the mesh M
is determined by

~1
pP—q
(kr)rep = <— <p+<np7 Z H_H%<np—nq>p—Q>>>
geN (P)\{pr} p—4q

) .
<<87‘k k6{1,2,3}7n{r )TGP (3:3)

which is the same vector as for the Euclidean metric but now every component is weighted
with a certain scalar.

Let us also explicitly rewrite the directional derivative of f in the direction of a local normal
vector n, for r € P.

of N on
<<87“k>ke{1,2,3}’nr> N Z Z)<<np7 >l+a Z np—nq’alf> ;

k=1peN(r q€N (p)\{p}
" 6np k
- ¥ <(<np,l>—sp)l+a > “qu k" >
PEN(r) geN (p)\{p}

Generally, what remains to solve the Shape-From-Shading problem for a given gray level
shading image of a Lambertian shape M is to make an appropriate choice for each of the
subsequent points:
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e A Riemannian metric for the shape space S,

e in case an H"-metric is used, a value for the regularization parameter p € R+,
e a value for the penalty parameter a € Rx>,

e values for several parameters in the optimization algorithm.

The optimal choices depend, for sure, on the image, the information about the underlying
shape and the algorithm which is used; hence, we will collect and discuss appropriate choices
in section 3.3.

3.2 Optimization Algorithms

We concentrate our interest on two optimization methods in the shape space S of triangulated
meshes with fixed connectivity and N points. First, we consider the basic steepest descent
method, which can be implemented quite straight forward. Second, we study the nonlinear
conjugate gradient method using the Fletcher-Reeves scheme. The convergence of this method
in Riemannian manifolds has been analyzed in [7]. For these algorithms we need all the theo-
retical concepts introduced in the previous sections, for example, the calculation of geodesics
and parallel translates in Riemannian manifolds.

We use MATLAB to implement these optimization methods. In detail, we write two
MATLAB-functions which contain the steepest descent algorithm and the NCG-algorithm.
Moreover, we also use two functions which evaluate the right-hand-side of the geodesic equa-
tions and calculate the parallel translate of a tangent vector along a (discretized) curve in S.
These functions will be discussed in the following subsections. However, we also use several
functions which we need for technical reasons; these functions are the following ones. The func-
tion crossp returns the cross product of two three-dimensional vectors; shade interpolates the
value of the shading image at each point in the given domain. The functions n and n_t calcu-
late the normal vector to a triangular mesh at a given point, and its derivative respectively; t
simply returns x,n, for given p € P and K. In addition, f and gradf evaluate the function f
and expression (3.2), respectively (3.3). innprod calculates the Riemannian inner product of
two tangent vectors, and findmin determines that point on a (discretized) curve in S where
f is minimal. Finally, the functions plotshape and savefig are used to plot a shape and to
generate the resulting image file.

3.2.1 Geodesic Steepest Descent Method

The idea of the geodesic steepest descent method in the shape space § is quite the same as
in the context of vector spaces. One starts the algorithm at some point x¢g € S and calculates
the direction vy € T;,,S of steepest descent of the objective function f. But now this direction
also depends on the Riemannian metric as we have seen in the previous section. Then, we may
consider the geodesic u through x¢ with tangent vector vg and employ a line search method to
minimize the function f along u. For this case, we calculate a given number of points y; along
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the geodesic u and evaluate f at exactly these points. We determine that point y;, where f is
minimal; this gives us the next iterate x1 where the procedure is repeated. If we proceed like
this, all the points y; are used and no further computational effort is necessary to calculate
other intermediate points on the geodesic u.

The steepest descent method is implemented in the function steepestdesc; this function
requires several input parameter. box is a matrix in R?*? with the lower left and upper right
corner of a rectangle in R? which determines the z- and y-coordinates of the resulting shape.
tri is a matrix which contains for each triangle the indices of its vertices, and boundpts is
a vector whose entries are 1 if the corresponding node is at the boundary of the triangulated
mesh and 0 otherwise. This vector can be used to keep the boundary of a mesh fixed during the
optimization process. neibtri, neibpts and edge are matrices where each row corresponds
to a node and contains a vector of indices of neighbouring nodes; neibtri collects the indices
of the nodes of all adjacent triangles, neibpts the indices of all neighbouring nodes and edge
the indices of those neighbouring nodes whose index is larger than that of the current node.
Moreover, 1ight defines the direction of the light source, shadepts contains the gray values
of the shading image, alpha is the penalty parameter in the function f, m defines the used
H™-metric and regul the regularization parameter of this metric. Finally, u0 € R3V denotes
the initial mesh, itereq the number of steps along a geodesic as described above, delta0 the
initial step length and maxit the maximal number of updates of the triangular mesh.

At the beginning, the function calculates the optimal descent direction for f using the
function gradf. Within the subsequent while-loops, the following steps are repeated. Firstly,
points on the geodesic starting at u in direction kappa are calculated, secondly, the minimum
of f along these points is determined, and thirdly, the new direction of steepest descent of f is
calculated. We know from Lemma 2.19 (with U = V = T the tangent vector to the geodesic
x) that (T,T) is constant along the geodesic = for T' = dx/dt. Here, we employ this result to
kappa, which represents the tangent vector 7' to the geodesic x. At line 26, we calculate the
norm nrm of the initial tangent vector; and after each step along the geodesic, we scale at line 33
the new tangent vector to have the length nrm. This correction makes the procedure of explicit
Euler-steps also more stable. Besides, we need the function equations which calculates the
change of all node positions u and of the vector kappa; we will describe this function below.
In addition, the step length epsilon is defined at line 30 in such a way that it is small if the
node positions rapidly change; the scalar delta then determines the normalized step length.
Finally, delta can also be reduced at line 51 if ind = 1; this is the case when the minimum
of f along the geodesic is attained for the current shape, then the current step length is too
large and has to be reduced.

%% The steepest descent method

function [u, res] = steepestdesc(box, tri, boundpts, neibtri, neibpts, edge,
light, shadepts, alpha, m, regul,
u0, itereq, delta0, maxit)

N OO W N =

%% Definition and initialization of several variables
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

52

npts = length (ul)/3;

h =1;

u = u0;

delta = delta0;

res = zeros(l, maxit);

%% Initialization of the search direction
kappa = —gradf (box, boundpts, neibtri, neibpts, u',
light, shadepts, alpha, m, requl);

while h <= maxit
ind = 2;

while (ind > 1) && (h <= maxit)
v = zeros(itereq + 1, 3*npts);
v(l, :) = u;

%% Propagate the solution of the geodesic equation
nrm = sqgrt (innprod(neibtri, edge, u', kappa, kappa, m, regul));
for k = l:itereq

vec = equations (boundpts, neibtri, neibpts, [v(k, :), kappal,

m, regul);

epsilon = delta/norm(vec (l:3xnpts));

vk + 1, :) = v(k, :) + epsilonxvec(l:3xnpts)’';

kappa = kappa + epsilonxvec (3x*npts + l:end)';

kappa = kappaxnrm

/ sqgrt (innprod (neibtri, edge, u', kappa, kappa, m, regul));

end

%% Find the minimum of f along the geodesic path
ind = findmin (box, neibtri, edge,
light, shadepts, alpha, itereq + 1, v);
u = v(ind, :);
res (h) = f(box, neibtri, edge, u', light, shadepts, alpha);
disp(['ind = ', num2str(ind), ', f = ', num2str(res(h))]);

%% Calculate the new search direction
kappa = —gradf (box, boundpts, neibtri, neibpts, u',
light, shadepts, alpha, m, reqgul);
plotshape (tri, neibtri, u, kappa, 4, [10 20]);
h=h+ 1;
end

delta = delta/2;
end

The calculation of the right-hand-side of the geodesic equations (2.7) respectively (2.9)

is performed in the function equations. The various input parameter have already been

described above, except the variable uk which is just the concatenation of the vectors u and

kappa to one vector in R*. At the beginning, the current point on the geodesic and the

corresponding tangent vector are determined from the input parameter. Within the for-loop
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starting at line 19, all the normal vectors to the current mesh and the change of the current
node positions are calculated. At the lines 48 and 51, the user may choose the Riemannian
metric which is used for the geodesic equations.

In detail, the calculation of all the normal vectors is separated into the calculation of the
weighted averaged normal vector and its length at each vertex p. If an H"-metric is used, this
is more efficient than to call the function n which simply returns the normal vector n, at a
vertex p. This will be explained in a moment. Afterwards, the change of the current node
position is stored in the vector vec. If we decide to use the Euclidean inner product in the
shape space S, then £, = 0 for all p € P, see line 49. Otherwise, we also have to determine all
the vectors 7, using the function n_t. But this does not require a lot of computational effort,
if we use the intermediate results from the calculation of the normal vectors n,. It remains to
calculate £, for all p € P, which is done within the for-loop starting at line 57. This calculation
requires several variables for technical reasons. However, the main steps are realized at the
lines 78 — 83, where the sums in the numerator and denominator of &, are calculated, compare
equation (2.9). Finally, these values are used at line 86 to determine £,.

%% Calculation of the right hand side of the system of geodesic equations

function vec = equations (boundpts, neibtri, neibpts, uk, m, regul)

Definition and initialization of several variables
npts = size(neibtri, 1);

vec = zeros (4*npts, 1);

nom = cell (npts, 1);

© 0 g O Uk W N =
o\
o°

den = zeros(npts, 1);

-
o

nvec = cell (npts, 1);

-
-

ntvec = cell (npts, 1);

=
[V

tang = cell (npts, 1);

= =
W

%% Definition of the point on the geodesic and the corresponding tangent vector

-
ot

u = uk (l:3xnpts)';

—
[=2]

kappa = uk (3xnpts + l:4*npts)’';

17

18 %% Calculation of d/dt (u)

19 for delta = l:npts

20 p = u(3*xdelta — 2:3xdelta);

21 ind = neibtri{delta};

22 nneib = length (ind);

23

24 %% Calculation of the normal vector
25 temp = [0; 0; 0];

26 for k = 1:2:nneib

27 i = ind(k);

28 j = ind(k + 1);

29 temp = temp + crossp(u(3+«1i — 2:3x1) — p, u(3*«j — 2:3%x3) — p);
30 end

31 nom{delta} = temp;

w
i~}
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if norm(temp) == 0;
den (delta) = 1;
nvec{delta} = temp;
else
den (delta) = 1/norm(temp) ;
nvec{delta} = temp/norm(temp);
end

%% Calculation of d/dt (u"delta)
tang{delta} = kappa(delta)~*nvec{delta};
if boundpts (delta) == 0
vec (3xdelta — 2:3+delta) = tang{delta};
end

%% Calculation of d/dt (kappa) using the Euclidean inner product
vec (3xnpts + l:4%npts) = 0;

Calculation of d/dt (kappa) using a Riemannian metric of H m—type
Calculation of d/dt (n-p)
for delta = l:npts

o° oo

o
°
o
°

ntvec{delta} = n_t (neibtri, u, tang, nom{delta}, den(delta), delta);

end

for delta = l:npts

if boundpts (delta) ==
p = u(3xdelta — 2:3xdelta);
kappap = kappa (delta);
nvecp = nvec{delta};
ntp = ntvec{delta};
tp = tang{delta};
ind = neibpts{delta};
nneib = length (ind);

o°

% Calculation of d/dt (kappa“delta)
templ = [0; 0; O0];
temp2 = [0; 0; 0];

for k = l:nneib;
1 = ind(k);
g = u(3*x1l — 2:3%1);

kappag = kappa(l);
nvecq = nvec{l};
ntqg = ntvec{l};

tg = tang{l};

templ = templ + (p — q)/norm(p — q)~ (2*m)

(mx ((tp — tg) "*(p — 9)) "2/norm(p — q) "2
(kappap*ntp — kappag*ntq) '+ (p — q)
norm(tp — tqg) "2);

*

37

temp2 = temp2 + (p — q)/norm(p — g) " (2*m)* (nvecp — nvecq) "x(p — q);

end
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85

86 vec (3xnpts + delta) = (nvecp'sxtempl)/(regul + nvecp'xtemp?2) ;
87 end

88 end

3.2.2 Geodesic Nonlinear Conjugate Gradient Method

In contrast to the steepest descent method, the nonlinear conjugate gradient (NCG) method
also uses gradients and search directions from previous iterates to calculate the new search
direction. Therefore, it is necessary to ”compare“ tangent vectors from different tangent spaces,
say X € Ty, S and Y € T}, S for different meshes M, My € §S. In R”, endowed with the
FEuclidean inner product, this is trivial since each tangent space T, R" is identified with R" itself.
But in general, we cannot identify T3, S with T, S. However, we may parallel translate the
tangent vector X along a geodesic joining M; and M to a tangent vector X' € Ty, S; then
one can compare the vectors X’ and Y, since they are elements of the same tangent space
T, S.

Generally, the NCG-algorithm follows the same ideas as the steepest descent algorithm
presented in subsection 3.2.1, except that the search direction is calculated in a different
manner. For this case, consider the old iterate xg € S, the gradient V f(x¢) € T,,S, the search
direction vy € Ty,S, the new iterate z; € S, the gradient Vf(x;) € T, S and the (discrete)
geodesic path u joining x¢ and x1. Then we parallel translate the vector vg along u to a vector
vy € Ty, S, which is in the same tangent space as V f(z1). The new search direction v, € T,, S
is then calculated using the Fletcher-Reeves scheme,

(Vf(@1), Vf(21))°

vy := Vf(x vy with =
1 f(z1) + yvg Y (Y f(20), V f(20))°

where (-,-)S denotes the Riemannian metric in S.

This algorithm is implemented in the function ncg, which has the same input arguments as
the function steepestdesc, except from the variable restart which determines the number
of iterations performed before the search direction is reset to the steepest descent direction.
Except for some technical details, the function ncg coincides with the function steepestdesc
up to line 47. Then the old negative gradient of f is stored and the new negative gradient
of f is calculated. If the minimum of f along the geodesic path is attained for the current
mesh, then a restart is performed, see line 56. The variable newgrad is true if and only if the
search direction has just been reset but not in the previous iteration step. Then the condition
in line 24 is true if ind = 1 and the search direction has been reset but not directly before.
If the minimum of f is attained for the current mesh even for points along a geodesic in the
direction of steepest descent, then the algorithms remains at the current iterate; consequently,
ind = 1, newgrad is false (see line 59) and the condition at line 24 is false (always provided
h < maxit). If no restart is performed, then the new search direction is calculated as described
above and the variable newgrad is set false. However, we employed the function parallel,
which we describe below, to calculate the parallel translate of the old search direction to the
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current iterate. Finally, the step length delta is reduced, if the algorithm stopped with the

current step length delta and h < maxit.

1 % The nonlinear conjugate gradient method using the Fletcher—Reeves—scheme
2

3 function [u, res] = ncg(box, tri, boundpts, neibtri, neibpts, edge,

4 light, shadepts, alpha, m, regul,

5 u0, itereq, delta0, maxit, restart)

6

7 %% Definition and initialization of several variables

8 npts = length (u0)/3;

9 h =1;

10 u = u0l;
11 delta = delta0;

12 res = zeros(l, maxit);

13

14 %% Initialization of the search direction

15 kappal = —gradf (box, boundpts, neibtri, neibpts, u',
16 light, shadepts, alpha, m, regul);

17 lambdal = kappal;
18 newgrad = true;

19

20 while h <= maxit

21 ind = 2;

22

23 %% Calculate and plot the deformed shape

24 while ((ind > 1) || (newgrad == true)) && (h <= maxit)

25 uu = zeros (itereq + 1, 3xnpts);

26 kk = zeros(itereg + 1, npts);

27 uu(l, :) = u;

28 kk (1, :) = lambdal;

29

30 %% Propagate the solution of the geodesic equation

31 nrm = sqgrt (innprod(neibtri, edge, u', lambdal, lambdal, m, regul));
32 for k = l:itereq

33 vec = equations (boundpts, neibtri, neibpts,

34 [uu(k, :), kk(k, :)], m, regul);

35 epsilon = delta/norm(vec (l:3xnpts));

36 uu(k + 1, :) = uu(k, :) + epsilonxvec(l:3xnpts)"';

37 kk(k + 1, :) = kk(k, :) + epsilon*vec(3xnpts + l:end)"';

38 kk(k + 1, :) = kk(k + 1, :)s*nrm/sqrt(innprod(neibtri, edge,
39 u', kk(k + 1, :), kk(k + 1, :), m, regul));
40 end

41

42 %% Find the minimum of f along the geodesic path

43 ind = findmin (box, neibtri, edge,

44 light, shadepts, alpha, itereg + 1, uu);

45 u = uu(ind, :);

46 res (h) = f(box, neibtri, edge, u', light, shadepts, alpha);

47 disp(['ind = ', num2str(ind), ', f = ', num2str(res(h))]1);

48
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49 %% Save the old gradient and calculate the new gradient
50 kappal = kappal;

51 kappal = —gradf (box, boundpts, neibtri, neibpts, u',

52 light, shadepts, alpha, m, reqgul);

53

54 plotshape (tri, neibtri, u, kappal, 4, [10 20]);

55

56 if (ind == 1) || (mod(h, restart) == 0)

57 %% A restart is performed

58 lambdal = kappal;

59 newgrad = “newgrad;

60 disp('restart');

61 else

62 %% The old search direction is parallel translated
63 gamma = innprod(neibtri, edge, u', kappal, kappal, m, regul)
64 / innprod (neibtri, edge, u', kappaO, kappa0O, m, regul);
65 lambda0 = parallel (boundpts, neibtri, neibpts, edge,
66 [O:epsilon: (ind — 1)=xepsilon],

67 uu(l:ind — 1,:), kk(l:ind — 1,:), lambdal,
68 m, regul);

69

70 %% The new search direction is calculated

71 lambdal = kappal + gammaxlambdaO;

72 newgrad = false;

73 end

74

75 plotshape (tri, neibtri, u, lambdal, 5, [10 20]);

76 h=h+ 1;

7 end

78

79 delta = delta/2

80 end

The function parallel calculates the parallel translate of a given tangent vector along
a geodesic using either equation (2.10) or (2.11). The input parameter boundpts, neibtri,
neibpts and edge have already been described in subsection 3.2.1. The vector epsilon con-
tains the step lengths along the geodesic path uu and kk represents the corresponding tangent
vectors. lambda is the vector which is parallel displaced; m and regul are the same as above.
Analogously to the function equations, we may choose the Riemannian metric which is used
in the shape space S. If we use the Euclidean metric, then the parallel translate is just lambda
due to equation (2.10).

If we decide to use an H™-metric, then the function follows quite the same strategy to
calculate the parallel translate as in the calculation of the geodesic path. This is the case
since the geodesic equation and the equation of parallel translation are very similar. At the
beginning, the norm of lambda is calculated. Due to Lemma 2.19 (with U =V =Y the tangent
vector represented by lambda), this norm is a constant under parallel displacement. Then the
parallel translate of the vector is calculated at each point of the geodesic path; this is realized
with the for-loop starting at line 18. Within this loop, the following steps are repeated. First,
all the normal vectors to the current mesh are calculated and several intermediate results are
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stored; this is done analogously to the function equations. In the same manner as above,
all the vectors n, are calculated at line 55. Now, the change of the tangent vector lambda
is calculated, but since the boundary is fixed during the minimization process, we need not
consider its parallel translate at the boundary. Now, we have to deal with several variables
which we need for technical reasons. But similar to the function equations we calculate the
numerator and the denominator of the right-hand-side of equation (2.11) within the lines 81 —
88. Then the parallel translate of lambda at the next iterate of the geodesic path is calculated
at line 92. If the update is done for all points, then the vector is scaled at line 96 in such a
way that is has the same norm as the initial tangent vector.

o

% Calculation of the parallel translate of a tangent vector along a geodesic

function vec = parallel (boundpts, neibtri, neibpts, edge,
epsilon, uu, kk, lambda, m, regul)

o\

% Parallel translation of lambda using the Euclidean inner product
vec = lambda;

% Parallel translation of lambda using a Riemannian metric of H m—type
% Definition and initialization of several variables

11 npts = size(neibtri, 1);

12 nsteps = length (epsilon);

14 %% Calculation of the norm of the initial tangent vector
15 nrm = sqgrt (innprod(neibtri, edge, uu(l, :)', lambda, lambda, m));

17 %% Calculate the parallel translate at all points of the geodesic path
18 for h = l:nsteps

19 u=uu(h, :)"';

20 kappa = kk(h, :)';

21 lambda0 = lambda;

22 nom = cell (npts, 1);

23 den = zeros (npts, 1);

24 nvec = cell (npts, 1);

25 ntvec = cell (npts, 1);

26 tang = cell (npts, 1);

27

28 %% Calculation of d/dt (u)
29 for i = l:npts

30 P = u(3xi — 2:3%1);
31 ind = neibtri{i};

32 nneib = length (ind);
33

34 %% Calculation of the normal vector
35 temp = [0; 0; O0];

36 for j = 1:2:nneib

37 k = ind(3);

38 1 = ind(3j + 1);

39 temp = temp + crossp(u(3xk — 2:3xk) — p, u(3«x1l — 2:3x1) — p);
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end
nom{i} = temp;
if norm(temp) == 0;
den(i) = 1;
nvec{i} = temp;
else
den (i) = 1/norm(temp);
nvec{i} = temp/norm(temp);
end

tang{i} = kappa (i) *nvec{i};

%% Calculation of d/dt (n_p)
for i = l:npts

ntvec{i} = n_t (neibtri, u, tang, nom{i}, den(i), 1i);
end

for i = l:npts

if boundpts (i) == 0
P = u(3xi — 2:3%1);
nvecp = nvec{i};
ntp = ntvec{i};
tp = tang{i};
Xp lambdal (i) *xnvecp;
kappap = kappa (1) ;
ind = neibpts{i};

nneib = length(ind);

%% Calculation of d/dt (lambda“delta)

templ = [0; 0; O0];
temp2 = [0; 0; O0];
for k = 1l:nneib;

1 = ind(k);

g = u(3x1l — 2:3%1);
kappaq = kappa (1) ;

nvecq = nvec{l};

ntq = ntvec{l};

tg = tang{l};

xg = lambdaO (1) *nvecq;

templ = templ + (p — q)/norm(p — g) "~ (2*m)

(mx ((xp — xq) "*(p — q))

* ((tp — tg) "x(p — q)) /norm(p — q) "2
(kappap*ntp — kappagxntq) '« (p — q)
(xp — xq) " (tp — taq));

temp2 = temp2 + (p — q)/norm(p — q) " (2*m)
((nvecp — nvecq) 'x(p — q));

end

temp3 = (nvecp'*templ)/ (regul + nvecp'x*temp2);
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92 lambda (i) = lambdaO (i) + epsilon (h)*xtemp3;

93 end

94 end

95

96 lambda = lambda*nrm ...

97 / sqgrt (innprod (neibtri, edge, u, lambda, lambda, m, regul));
98 end

99 vec = lambda;

3.3 Results and Comparison of the Different Approaches

In this section, we present the results of the optimization algorithms, which we described in
section 3.2, in different situations. For this case, we consider three gray level shading images.
The first image contains the calculated shading values of a smooth synthetic surface which is
the graph of a function. Besides, we use the same surface to generate various shading images;
one image for a light direction which coincides with the direction of the observer and some
images for the case of an oblique light source. The second shape which we want to reconstruct
is the bottom of a small ceramic box. This shape has quite a challenging topography with
smooth parts and a sharp circular elevation. Finally, we test our optimization methods with a
shading image of the author’s face.

In section 3.2 we discussed two algorithms, the geodesic steepest descent method and the
geodesic NCG-method. However, we will see that the difference between these two methods
depends on the problem but is generally quite small. Moreover, the visual results are nearly the
same, hence, we will only present the images of the results obtained with the NCG-method.
Furthermore, we have to find appropriate values for various parameter in the optimization
algorithms; these values shall only depend on the shape which we want to reconstruct. We do
this in order to compare the performance of the algorithms using different Riemannian metrics
in the shape space S; these metrics shall be the Euclidean metric, the H°- and the H?-metric.
Below, we collect these values for each shape and discuss the advantages of these metrics in
the different situations.

First, we consider a synthetic surface, which is the graph of the following function g :
[-1,1] x [-1,1] = R,

g(z,y) = e P <cos (10\/ (x +.2)2 + y2) + cos (10\/ (x —.2)2 + y2>> .

This surface is shown in three different perspectives in Figure 3.2. If the direction of the
light coincides with the z-axis, we cannot initialize the algorithms with a triangulated planar
surface since this is already a critical point of the function f (see equation (3.1)). Hence, we
use a triangulated mesh which slightly differs from a plane. Then, we reconstruct the shape
in two steps. First, we use a coarse mesh (with edge length 0.1) to construct a shape which
has the correct surface topography, see Figure 3.3. If the resolution is too coarse, then we
may not reconstruct all details of the topography; otherwise, if the resolution is too fine, the
reconstruction is generally not smooth enough. An increase of the regularization term of f
is not the best choice since this also causes the final reconstruction to be overly smooth in
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comparison to the given data. However, this first optimization process results in a certain
shape. Now, we refine the corresponding mesh and use this refined mesh (with edge length
0.05) as the initialization of the second optimization process on a finer level. This finer level
is also the resolution which will be used for the reconstruction of the remaining shapes.

Figure 3.4 shows the final reconstruction of the surface for the three considered Riemannian
metrics. The convergence of the two optimization processes is presented in the Figures 3.5 and
3.6. One sees that the difference between the steepest descent and the NCG-method is quite
small; however, the reconstruction is a bit more smooth, if the H%- or the H?-metric is used.
Besides, Table 3.1 contains the values of the function f for the initial and final shapes of the
two optimization processes, if the steepest descent method or the NCG-method is used. These
results were obtained with the following choices for the parameters which we already described
in section 3.2.

e light direction [ = (0,0, 1), regularization o = 0.05,
e p=0.001 for the H%metric and p = 30 for the H2-metric,

e itereq = 3, maxit = 50, delta = 0.01 and restart = 5 for the first optimization
process,

e itereq = 3, maxit = 20, delta = 0.05 and restart = 5 for the second optimization
process.

For the H?-metric a higher regularization is necessary as for the H’-metric since ||p — ¢||*" is
much smaller for n = 2, and hence, the absolute value of

p—q
Np, Ny — Ng, D — q)
<p 2 lp—ql>" " >

geN (p)\{p}

may be much larger. This will be the same for the remaining shapes.

The second shape is the bottom of a small ceramic box. We use a gray level image, which
is a part of a usual jpg-image, to reconstruct the surface. However, the surface of the ceramic
is also specular and thus some reflexions appear in the image. These reflexions are removed in
the course of preprocessing the shading image. Figure 3.7 also shows the initial shape for the
optimization algorithms, which is a flat parabolic surface. Here, we only use one resolution
to reconstruct the surface. In Figure 3.8 the shading images of the initial shape and of the
reconstructed shape for the H?-metric are plotted. Figure 3.9 shows the final result for the
three different Riemannian metrics. Similar to the synthetic surface, the results for the different
metrics only slightly differ. In addition, Figure 3.10 shows the convergence of the algorithms
and Table 3.2 the final values of f for the steepest descent and NCG-method. Here, we see
that the NCG-algorithm reaches a smaller value of f than the steepest descent method after
the same number of iterations. The choices for the parameters in the algorithms are

e light direction [ = (0,0, 1), regularization o = 0.1,

e p=0.01 for the H%metric and p = 100 for the H2-metric,
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e itereq = 3, maxit = 100, delta = 0.02 and restart = 5 for the optimization process.

However, we have to keep in mind that the higher the regularization is, the more Euclidean
is the performance of the metric. But due to numerical tests, we have to choose quite a
high regularization for the H2-metric; consequently, the behaviour is similar to the Euclidean
metric.

A challenging problem is the reconstruction of a face from a shading image. Firstly, this
is the case since a face consists of rather smooth parts together with regions where the local
gradient is quite large. Secondly, some parts of the face may even not be visible, for example
the side of the nose; strictly speaking, we therefore cannot consider the face as the graph of a
function as explained in section 3.1. And thirdly, a face is generally not an ideal Lambertian
surface. Especially, the black eyebrow and eyelash have to be removed in the image; otherwise,
the algorithms ”interpret® the eyelash as a region with a large gradient, in contrast to the
reality. Figure 3.11 shows the initial shape for the reconstruction and the shading image of the
author’s face, where the eyebrow and eyelash are at least toned down. However, neither the
steepest descent method nor the NCG-method converges to a final shape which is sufficiently
close to any face. Only within the first 30 iterations, the reconstruction is similar to a face.
Thus, we compare the intermediate results for the Euclidean metric, the H°- and the H?-
metric after 10, 20 and 30 iterations (see Figures 3.13 — 3.15). Besides, Figure 3.12 contains
the shading images of the initial shape and of the reconstruction of the face after 30 iterations
using the HZ?-metric. Figure 3.16 shows the convergence of the NCG-algorithm for these
three metrics. However, we see that the values of f only slightly decrease during the first 30
iterations; hence, one has to adopt the functional f, and maybe also the used Riemannian
metric, to find a realistic reconstruction of the face. Table 3.3 contains certain values of f,
which are within the same range for both, the steepest descent method and the NCG-method.
For the algorithms we use

e light direction [ = (0,0, 1), regularization a = 0.1,
e p=0.001 for the H%metric and p = 10 for the H?-metric,
e itereq = 3, maxit = 30, delta = 0.02 and restart = 5 for the optimization process.

Finally, we apply the steepest descent method and the NCG-method to reconstruct the
synthetic shape, but now from the shading image of an oblique light source at [ = (0.1,0,1),
I =(0,0.1,1) and [ = (0.1,0.1,1). Strictly speaking we use the normalized vector | = [/||l||. For
this case, we use exactly the same approach as for the reconstruction of the synthetic surface
described above, except from the number of iterations which we increase to 100 iterations for
both, the coarse-grid and the fine-grid-optimization process. In addition, we use the negative
of the initial shape used above for the cases [ = (0,0.1,1) and [ = (0.1,0.1,1); and we also
invert the final shape for the case [ = (0,0.1,1). The results are shown in Figure 3.17 for the
steepest descent method and in Figure 3.18 for the NCG-method. The best result is obtained
with a light source at [ = (0,0.1,1). For the case [ = (0.1,0,1), the algorithms are able to
reconstruct the global topography, whereas for [ = (0.1,0.1, 1) neither the steepest descent nor
the NCG-algorithm sufficiently reconstructs the given surface. Moreover, the convergence of
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the second optimization process is plotted in Figure 3.19 for the steepest descent and in Figure
3.20 for the NCG-method. One sees that the values of f for the last iterates are quite close to
their limit; only the steepest descent method for [ = (0.1,0, 1) seems to minimize f (relevantly)
also within the next few iterations. Furthermore, Table 3.4 compares the values of f for the
initial and final shapes of the two optimization processes.

Figure 3.2: The synthetic shape shown in three different perspectives. Note the different scales
of the z-axis.

_11

o ‘
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Figure 3.3: The shading image of the synthetic shape, the initial shape and the reconstructed
surface after the coarse-grid-optimization process.

Figure 3.4: Reconstruction of the synthetic shape using different Riemannian metrics. From
left to right: Euclidean, H%- and H?-metric.
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Figure 3.5: Convergence of the coarse-grid-optimization process for the synthetic shape using
different Riemannian metrics. From left to right: Euclidean, H°- and H?-metric.

0

100 5 10 15

20

10

0

100

20

0
0 5 10 15 20

10

Figure 3.6: Convergence of the fine-grid-optimization process for the synthetic shape using
different Riemannian metrics. From left to right: Euclidean, H°- and H?-metric.

Figure 3.7: The bottom of the ceramic box, its shading image and the initial shape.
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Figure 3.8: The shading images of the initial shape and of the reconstructed shape.
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Figure 3.9: Reconstruction of the bottom of the ceramic box using different Riemannian met-
rics. From left to right: Euclidean, H%- and H2-metric.
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Figure 3.10: Convergence of the optimization process for the bottom of the ceramic box using
different Riemannian metrics. From left to right: Euclidean, H°- and H?-metric.

Figure 3.11: The shading image of the author’s face and the initial shape.
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Figure 3.12: The shading images of the initial shape and of the reconstruction of the face.
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Figure 3.14: Reconstruction of the face after 20 iterations using different Riemannian metrics.

From left to right: Euclidean, H°- and H?-metric.
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Figure 3.15: Reconstruction of the face after 30 iterations using different Riemannian metrics.

From left to right: Euclidean, H°- and H?-metric.
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metrics. From left to right: Euclidean, H°- and H?-metric.
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Figure 3.17: Reconstruction of the synthetic shape using the steepest descent method, the
Euclidean metric and an oblique light source. From left to right: { = (0.1,0,1), { = (0,0.1,1),
[ =(0.1,0.1,1).

Figure 3.18: Reconstruction of the synthetic shape using the NCG-method, the Euclidean
metric and an oblique light source. From left to right: [ = (0.1,0,1), I = (0,0.1,1), [ =
(0.1,0.1,1).
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Figure 3.19: Convergence of the fine-grid-optimization process for the synthetic shape using
the steepest descent method, the Euclidean metric and an oblique light source. From left to
right: { =(0.1,0,1), 1 = (0,0.1,1), I = (0.1,0.1, 1).
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Figure 3.20: Convergence of the fine-grid-optimization process for the synthetic shape using
the NCG-method, the Euclidean metric and an oblique light source. From left to right: [ =
(0.1,0,1), 1 = (0,0.1,1), I = (0.1,0.1, 1).
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Table 3.1: The values of the function f for the initial and final shapes in the reconstruction of
the synthetic surface. Left: Steepest descent method. Right: NCG-method

Eu H° H? Eu  H° H?
1 529 529 529 f 1529 529 529
fia | 254 269 252 fina | 264 260 258
211024 1097 9.9 211063 1051 10.09
£, ] 363 392 384 f2 .1 364 367 403

Table 3.2: The values of the function f for the initial and final shape in the reconstruction of
the bottom of the ceramix box. Left: Steepest descent method. Right: NCG-method

| Bw  H" H? | Bw  H° H?
finit | 27.94 27.94 27.94 finit | 27.94 27.94 27.94
fina | 931 9.36  9.05 frina | 6.63 677 718

Table 3.3: The values of the function f for the initial shape and the reconstruction of the face
after 10, 20 and 30 iterations. Left: Steepest descent method. Right: NCG-method

Eu HO H? Eu HO H?
finie | 98.19 98.19 98.19 finit | 98.19 98.19 98.19
fio | 89.35 89.30 89.48 fio | 90.27 89.91 89.72
foo | 78.58 78.62 79.41 foo | 79.84 79.48 79.87
fs0 | 69.20 68.97 71.59 fs0 | 70.53 70.04 71.66

Table 3.4: The values of the function f for the initial and final shapes in the reconstruction of
the synthetic surface using the Euclidean metric and an oblique light source [. Left: Steepest

descent method. Right: NCG-method

I |(0.1,0,1) (0,0.1,1) (0.1,0.1,1) [ | (0.1,0,1) (0,0.1,1) (0.1,0.1,1)
1 536 5.43 5.50 F T 536 5.43
fa | 211 2.36 1.92 £ 18 9.14
f21 793 9.57 8.22 A 1 8.60
| 292 3.47 3.50 a2 2.98







Chapter 4

Remarks and QOutlook

In the process of writing the thesis and in discussions with Prof. Ring, some suggestions for
further improvements or further studies came up. Some of these ideas would require to rewrite
a large part of the algorithms and functions and could be part of future research.

One suggestion concerns the Riemannian metric which is used in the shape space S. In the
thesis, we considered the Euclidean metric and the H™-metric. Since, the Euclidean metric
is the standard inner product in & = R3V, this inner product serves as a reference metric
for more sophisticated metrics. For example, we may compare the advantages of each metric
for a certain problem. However, the idea to introduce the H™-metric was to adopt the as-
isometric-as-possible-metric from [4] in such a way to penalize points that come too close to
each other more effectively. And in principle, we could realize this idea. Nevertheless, Kilian
et al. [4] wanted to deform meshes as-isometric-as-possible, hence, they looked for a metric
which penalizes non-isometric deformations. But we are not interested in special deformations,
we want to minimize a function in the shape space. Thus, it may be more advantageous
to construct a metric such that the optimal descent directions for a function allow a faster
convergence to the minimizer, in comparison to the Euclidean metric.

Another idea was introduced in the context of the geodesic equations. In order to obtain
an explicit formula for £,, we had to make an approximation (see equation (2.8)) and we
mentionned that an exact solution would require to solve a band-structured linear system for
%. However, one may bother about the disadvantage of this simplification. The answer can
be given if we rewrite the functions used in the algorithm and compare the performance. But
again, we want to minimize a function and in addition this process should be as fast as possible.
Therefore, we should avoid too much computational effort unless this is useful to obtain a faster
convergence. If we replace all approximations similar to equation (2.8) by a matrix solve, then
such efforts are necessary to calculate the optimal descent direction, a step along a geodesic
and the parallel translate of a vector.

Furthermore, one may think about the advantage of the explicit Euler method which is
used in two functions. For sure, one may apply a Runge-Kutta-method, which yields a more
accurate approximation. But this is also more expensive since we have to evaluate the right-
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hand-side of the geodesic equations, or of the equations of parallel translation, about four times
as much as for the explicit Euler method. Moreover, the situation is even more complicated
if we do not have an explicit formula for # which we can evaluate, but if we have to solve a
linear system for each point in the mesh in order to calculate i

In addition, one may see a slight analogy between the step length used for the explicit
Euler steps and the Courant-Friedrichs-Lewy-condition (CFL-condition). In the context of
partial differential equations solved with a finite-difference-scheme, this condition relates the
step length At in time to the size Ax of the spatial discretization. This condition is a necessary
condition for the convergence of the finite-difference-scheme. In one dimension and for explicit

Euler steps, this condition reads

uAt

— <1

Ax
where u is the velocity of the system associated with the equation. For sure, we do not solve
a partial differential equation, but nevertheless, we also use a discretized surface in space and

discrete time steps. The step length in time which we use in the algorithms is essentially
0

€= —
[[v]]

where ||v]| is the norm of the first time derivative of (p),cp and 6 < 0.05. And this satisfies
the CFL-condition since the size of our space discretization is always greater or equal 0.05.
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