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1 General Setting and Preliminaries

This seminar paper is intended to work out in detail the concept of shape derivatives, which is presented
in the paper of [IKPa]. The ideas and results discussed in the following are mainly based on this work.

The main task of this paper is to investigate the shape differentiability of the functional

J(u,Ω,Γ) :=

∫
Ω

j1(u)dx+

∫
Γ

j2(u)ds+

∫
∂Ω\Γ

j3(u)ds (1)

subject to
E(u,Ω) = 0. (2)

Here, we impose the following assumptions on the cost functional J and the constraint E. For this case,
let U ⊂ Rd be a fixed bounded domain with C1,1-boundary ∂U and D ⊂ U be a domain such that
D̄ ⊂ U . Moreover, D is supposed to have a C1,1-boundary Γ := ∂D too. For the domain Ω ⊂ U , the
following three cases are admissible

(a) Ω = D,

(b) Ω = U,

(c) Ω = U\D̄.

Furthermore, E(u,Ω) stands for the weak formulation of a partial differential equation stated on the
domain Ω, which defines the state u : Ω→ Rl, l ∈ N≥1, of the considered system.

Nevertheless, one could also work with a domain U ⊂ Rd, which is convex but has only a Lipschitzean
boundary ∂U . We will see in the following that it is not essential to restrict oneself to a certain type of
the domain U ; however, it will be cleary mentionned if the additional C1,1-regularity is necessary at some
point. Besides, it is also possible to use a different constraint E(u,Ω) instead of a partial differential
equation, e.g. an integral equation or an explicit formula for the state u. At the beginning of the next
section, we will axiomatize the properties of the admissible constraints.

Remark 1.1. In the situation of case (a), we have ∂Ω = ∂D = Γ, in case (b), ∂Ω = ∂U and for case
(c), one finds ∂Ω = ∂(CΩ) = ∂(CU ∪ D̄) = ∂(CU) ∪ ∂D̄ = ∂U ∪ ∂D = Γ ∪ ∂U .

In order to study the shape differentiability of J , we are interested in the dependence of J on the
domain Ω. Hence, we define certain mappings, which ”slightly deform” the domain Ω into a different
domain, and compare the values of J for these two different domains. The mappings, which are used
here to realize such ”deformations”, are so called perturbations of identity.

Definition 1.2. For h ∈ C1,1(Ū ,Rd), h|∂U = 0 and t ∈ R define Ft : U → Rd via Ft := id+ th.

Proposition 1.3. There exists a τ > 0 such that Ft(U) = U and Ft is a C1-diffeomorphism on U for
all t ∈ R with |t| < τ .

Proof. 1. Ft(U) ⊂ U : Let x ∈ U , then dist(x, ∂U) > 0. Since ∂U is compact, there exists a x0 ∈ ∂U
such that ‖x − x0‖2 = dist(x, ∂U). Using an estimate for vector-valued functions related to the
mean-value-theorem for scalar-valued functions we find

‖Ft(x)− x‖2 = |t|‖h(x)‖2 = |t|‖h(x)− h(x0)‖2 ≤ |t|M1‖x− x0‖2 < ‖x− x0‖2 = dist(x, ∂U)

if |t| < M−1
1 . Thus, Ft(x) ∈ U for all t ∈ R satisfying |t| < M−1

1 .

2. DFt is regular on U : At first, we show that ‖Dh‖ is bounded on U . Choose x0 ∈ U arbitrarily, then,
due to the boundedness of U and the Lipschitz-continuity of Dh, there exist constants K,L > 0
such that for all x ∈ U , ‖Dh(x)‖ ≤ ‖Dh(x) − Dh(x0)‖ + ‖Dh(x0)‖ ≤ L‖x − x0‖ + ‖Dh(x0)‖ ≤
KL + ‖Dh(x0)‖, which shows this first claim. Now, let x ∈ U . Then there exists a constant
C ∈ (0, 1) such that

‖I −DFt(x)‖ = |t|‖Dh(x)‖ ≤ C < 1

for all t ∈ R with |t| < M−1
2 , where M2 := supx∈U‖Dh(x)‖+ 1. Thus, DFt is regular for all x ∈ U

if
|t| < τ := min(M−1

1 ,M−1
2 ). (3)
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3. Ft is injective: Let t ∈ R, |t| < τ , x, y ∈ U and Ft(x) = Ft(y), then ‖x − y‖ = |t|‖h(x) − h(y)‖.
If [x, y] ⊂ U , then we find ‖h(x) − h(y)‖ ≤ M1‖x − y‖ analogously to the first part of the proof.
However, we can show that the claim also holds if [x, y] * U . In this case, we consider z(s) :=
(1 − s)x + sy, sx := min{s ∈ (0, 1)|z(s) ∈ ∂U}, sy := max{s ∈ (0, 1)|z(s) ∈ ∂U}, x0 := z(sx),
y0 := z(sy); these terms are well-defined since ∂U is at least Lipschitzean. Using that h = 0 on ∂U ,
one finds ‖h(x)−h(y)‖ ≤ ‖h(x)−h(x0)‖+‖h(y)−h(y0)‖ ≤M1(‖x−x0‖+‖y−y0‖) ≤M1‖x−y‖.
Therefore, if x 6= y,

‖x− y‖ = |t|‖h(x)− h(y)‖ ≤ |t|M1‖x− y‖ < ‖x− y‖,

a contradiction. Thus, x = y, and Ft is injective.

4. Ft : U → Ft(U) is a C1-diffeomorphism: We use a result known from the lecture Analysis 2, the
local invertibility:

Let U ⊂ Rd be open, f ∈ C1(U,Rd) and Df(x0) be regular at x0 ∈ U . Then there exists
an open set O ⊂ Rd with x0 ∈ O such that

• f |O is injective,

• f(O) is open,

• g := (f |O)−1 ∈ C1(f(O),Rd) and Dg(y) = (Df(g(y)))−1.

Here, we apply this to each x ∈ U and notice that for |t| < τ due to the global injectivity of Ft all the
local invers functions gx coincide with F−1

t on each set Ft(Ox). And since Ft(U) = Ft(∪x∈UOx) =
∪x∈UFt(Ox), we know that F−1

t is continuously differentiable on the open set Ft(U), which proofs
the claim.

5. Ft(U) = U : Let |t| < τ . We know that U is connected and Ft(U) 6= ∅ since U 6= ∅. Moreover, Ft(U)

is open as we have already seen, and Ft(Ū) is compact since Ū is compact and Ft is continuous.
Furthermore, Ft(Ū) = Ft(U ∪ ∂U) = Ft(U) ∪ Ft(∂U) yields

Ft(Ū) ∩ U = (Ft(U) ∩ U) ∪ (Ft(∂U) ∩ U) = Ft(U) ∪ (∂U ∩ U) = Ft(U)

and, therefore, Ft(U) is relatively open and relatively closed in U. Hence, Ft(U) = U and the proof
is complete.

Definition 1.4. For t ∈ R define Ωt := Ft(Ω) and Γt := Ft(Γ), the perturbed domains and manifolds.

Proposition 1.5. Ωt ⊂ U , Γt ⊂ U , ∂Ωt\Γt = ∂Ω\Γ and Γt is of class C1,1 for all t ∈ R with |t| < τ .

Proof. Let t ∈ R, |t| < τ , then Ωt = Ft(Ω) ⊂ Ft(U) ⊂ U and Γt = Ft(Γ) ⊂ Ft(U) ⊂ U . If Ω = D,
we have ∂Ωt\Γt = Γt\Γt = Γ\Γ = ∂Ω\Γ; if Ω = U , we find ∂Ωt\Γt = ∂U\Γt = ∂U = ∂Ω\Γ; and if
Ω = U\D̄, one finds ∂Ωt\Γt = (Γt ∪ ∂U)\Γt = ∂U = ∂Ω\Γ.

Since Ft ∈ C1,1(U,Rd) and Γ is of class C1,1, one can deduce that Γt is C1,1 since the C1,1-
parametrizations of Γ, γi for i ∈ {1, ...,m} with m ∈ N≥1, may be transfered to C1,1-parametrizations
of Γt, Ft ◦ γi for i ∈ {1, ...,m}.

Definition 1.6. 1. Let t ∈ R, |t| < τ . If E(u,Ωt) = 0 admits a unique solution, then we denote it
by ut : Ωt → Rl and define ut : Ω→ Rl via ut := ut ◦ Ft.

2. For t ∈ R, |t| < τ and u : Ω→ Rl we define

Ẽ(u, t) := E(u ◦ F−1
t ,Ωt),

provided the right-hand-side is well-defined.

3. The Eulerian derivative of J at Ω in the direction h ∈ C1,1(Ū ,Rd) is defined via

dJ(u,Ω,Γ)h := lim
t→0

1

t
(J(ut,Ωt,Γt)− J(u,Ω,Γ)).
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4. J is called shape differentiable at Ω if dJ(u,Ω,Γ)h exists for all h ∈ C1,1(Ū ,Rd) and dJ(u,Ω,Γ) ∈
L(C1,1(Ū ,Rd),R).

The main advantage of Ẽ in comparison to E is the fact that the solution space of

E(ut,Ωt) = 0 (4)

is different for each t ∈ R, since E(ut,Ωt) = 0 is a PDE posed on the domain Ωt. However,

Ẽ(ut, t) = 0 (5)

is a PDE, which is equivalent to E(ut,Ωt) = 0 in the sense that the solutions are related by ut = ut ◦Ft,
respectively ut = ut ◦ F−1

t . But in contrast to E(ut,Ωt) = 0, the solution space of Ẽ(ut, t) = 0 is the
same for all (sufficiently small) t ∈ R, since Ẽ(ut, t) = 0 is a PDE defined on the reference domain Ω.

Remark 1.7. From the definitions above, we conclude the following. Let u : Ω→ Rl be a function, for
which E(u,Ω) is well-defined. Then Ẽ(u, 0) = E(u ◦ F−1

0 ,Ω0) = E(u,Ω).

2 Axiomatic Description and Auxiliary Results

Consider the shape functional J(u,Ω,Γ) together with the constraint E(u,Ω) as stated in (1) and (2).
In addition to the assumptions made at the beginning of the first section concerning U , D, Ω and Γ, we
now state some further assumptions on the functions E and Ẽ and the functionals j1, j2 and j3.

(H1) There exists a Hilbert space X and a function Ẽ ∈ C1(X × (−τ, τ), X∗) such that

• E(ut,Ωt) = 0 is equivalent to Ẽ(ut, t) = 0 in X∗,

• Ẽ(u, 0) = E(u,Ω) for all u ∈ X.

(H2) There exists a τ0 ∈ R, 0 < τ0 < τ such that for all t ∈ R, |t| < τ0 there exists a unique solution
ut ∈ X of Ẽ(ut, t) = 0. Furthermore, these solutions satisfy

lim
t→0

‖ut − u0‖X
t1/2

= 0.

(H3) Eu(u,Ω) ∈ L(X,X∗) satisfies

〈E(v,Ω)− E(u,Ω)− Eu(u,Ω)(v − u), ψ〉X∗×X = O(‖v − u‖2X)

for all ψ ∈ X together with u, v ∈ X.

(H4) E and Ẽ satisfy

lim
t→0

1

t
〈(Ẽ(ut, t)− Ẽ(u, t))− (E(ut,Ω)− E(u,Ω)), ψ〉X∗×X = 0

for all ψ ∈ X together with the solutions of (2) and (5), u and ut.

(H5) ji ∈ C1,1(Rl,R) for all i ∈ {1, 2, 3}.

The first assumption (H1) requires a certain smoothness of the partial differential equation, which is
assumed to appear in the weak formulation. In this process a function u ∈ X and a parameter t ∈ (−τ, τ)
are mapped to a functional in X∗ which can be tested with all functions ψ ∈ X. The two requirements
below correspond to the idea of transforming the constraint on Ωt into one on Ω, analogously to Definition
1.6 and Remark 1.7.

With (H2) a typical assumption on a unique solution of Ẽ(ut, t) = 0 for sufficiently small t ∈ (−τ, τ)
is made. Moreover, the solutions ut should not only converge to u0 in the X-norm but even ”faster”
than t1/2.

In (H3) a differentiability assumption on E(u,Ω) as a function of u is stated. In this case the
possibility of a Taylor-expansion of E(·,Ω) up to first order is required. Besides, this condition cannot
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be weakened to o(‖v−u‖X) since we will need in the main theorem that the left-hand-side of the equation
divided through ‖v − u‖2X is bounded for ‖v − u‖X → 0.

(H4) requires that the difference of the two differences, tested with every ψ ∈ X, in the brackets
converges even ”faster” to zero than t. This is mainly a technical assumption which will be used essentially
in the main theorem in the next chapter.

Finally, (H5) states a continuity assumption on all the single functionals appearing in J(u,Ω,Γ).
Nevertheless, this assumption cannot be weakened anymore since we will make use of the Lipschitz-
continuity of j′i, i ∈ {1, 2, 3}, throughout the proofs to come.

Remark 2.1. Further, we assume X ↪→ L2(Ω,Rl) and that every x ∈ X admits a trace in L2(Γ,Rl) or
in L2(∂Ω\Γ,Rl) if j2 6= 0 or j3 6= 0.

Lemma 2.2. 1. The cost functional J(u,Ω,Γ) is well-defined for all u ∈ X.

2. E(ut,Ωt) = 0 has a unique solution ut, which satisfies ut = ut ◦ F−1
t , provided |t| < τ0.

Proof. 1. Let u ∈ X and i ∈ {1, 2, 3}. For i ∈ {2, 3} we denote the trace of u on Γ respectively ∂Ω\Γ
again with u, then u is an L2-function on the corresponding set of definition. Due to (H5), j′i is
Lipschitz-continuous with Lipschitz-constant L > 0, hence, there exists a constant C > 0 such that
for all y ∈ Rl the following estimate holds; ξ(y) denotes a point which is a convex combination of
y and 0.

|ji(y)| ≤ |ji(y)− ji(0)|+ |ji(0)| = |j′i(ξ(y))(y − 0)|+ |ji(0)| ≤ ‖j′i(ξ(y))‖‖y‖+ |ji(0)|
≤ (‖j′i(ξ(y))− j′i(0)‖+ ‖j′i(0)‖)‖y‖+ |ji(0)| ≤ (L‖ξ(y)− 0‖+ ‖j′i(0)‖)‖y‖+ |ji(0)|
≤ C(‖y‖2 + ‖y‖+ 1).

Therefore, with x ∈ Rl, one finds

|ji(u(x))| ≤ C(‖u(x)‖2 + ‖u(x)‖+ 1)

and deduces that ji(u(x)) is integrable since u is an L2-function and the corresponding set of
definition is bounded. Thus, the cost functional is well-defined.

2. At first, (H2) implies that Ẽ(ut, t) = 0 has a unique solutnion ut for |t| < τ0; then, (H1) yields that
E(ut,Ωt) = 0 has a unique solutnion ut for |t| < τ0. The identity ut = ut ◦ F−1

t is a direct result
of the definition of ut.

Lemma 2.3. There exists a constant C > 0 such that for all i ∈ {1, 2, 3} and u, v ∈ X,

‖ji(v)− ji(u)− j′i(u)(v − u)‖L1 ≤ C‖v − u‖2X .

Proof. Due to the Mean-Value-Theorem, there exists a ξ(x) for every x ∈ Ω such that j1(v(x)) −
j1(u(x)) = j′1(ξ(x))(v(x)− u(x)). If L > 0 denotes the Lipschitz-constant of j′1, we find

‖j1(v)− j1(u)− j′1(u)(v − u)‖L1 =

∫
Ω

|j1(v)− j1(u)− j′1(u)(v − u)|dx

=

∫
Ω

|(j′1(ξ)− j′1(u))(v − u)|dx ≤
∫

Ω

L|v − u|2dx ≤ C‖v − u‖2X .

Analogously, one proofs the claim for j2 and j3, where Ω has to be replaced by Γ respectively ∂Ω\Γ.

Notation 2.4. In the sequel, n denotes the outer unit normal vector to Ω. Moreover, we use

• T := [−τ0, τ0],

• It := detDFt,

• At := (DFt)
−T ,

• wt := It‖Atn‖.
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Remark 2.5. For the following proposition, we need the concept of the surface divergence of a function
ϕ ∈ C1(Ū ,Rd), which is defined as

divM ϕ := divϕ|M − (Dϕn) · n

where M ⊂ Ū is a submanifold of dimension d− 1 and n denotes the unit normal vector to M .
This definition is similar to that of the intrinsic derivative [Fra97] of a vector-valued function V

defined on a curve C ⊂ M , where M is supposed to be a two-dimensional submanifold of R3. If C is
parametrised by t, one defines

∇V
dt

:=
dV

dt
−
(
dV

dt
, n

)
n =

3∑
i=1

(
dV

dt
, ei

)
ei −

(
dV

dt
, n

)
n

together with {ei}1≤i≤3, the canonical basis of R3. Here, the normal component of dV/dt is subtracted,
hence, ∇V/dt is the projection of dV/dt onto M .

In a similar way, the surface divergence is defined. If {ei}1≤i≤d is the canonical basis of Rd, then

divΓ ϕ = trDϕ− (Dφn) · n =

d∑
i=1

(Dϕei) · ei − (Dϕn) · n.

Thus, it is consistent to define the surface divergence in the form described above.

Proposition 2.6. Let h ∈ C1,1(Ū ,Rd) and Ft = id+ th for t ∈ T . Then

t 7→ Ft ∈ C1(T , C1,1(Ū ,Rd)), t 7→ F−1
t ∈ C(T , C1(Ū ,Rd)),

t 7→ It ∈ C1(T , C(Ū)), t 7→ At ∈ C(T , C(Ū ,Rd×d)),
t 7→ wt ∈ C(T , C(Γ)),

d
dtFt|t=0 = h, d

dtF
−1
t |t=0 = −h,

d
dtDFt|t=0 = Dh, d

dt (DFt)
−1|t=0 = d

dtA
T
t |t=0 = −Dh,

d
dtIt|t=0 = div h, d

dtwt|t=0 = divΓ h.

Proof. Throughout the proof, we use the notation tn → t∗ for a sequence (tn)n∈N ⊂ T which converges
to a given t∗ ∈ T .

t 7→ Ft ∈ C1(T , C1,1(Ū ,Rd)): tn → t∗ ⇒ ‖Ftn − Ft∗‖C1,1 = |tn − t∗|‖h‖C1,1 → 0 and

d

dt
Ft|t=t0 = lim

∆t→0

(t0 + ∆t)h− t0h
∆t

= h,

which is constant and, therefore, also continous in t with respect to the C1,1-norm.

t 7→ F−1
t ∈ C(T , C1(Ū ,Rd)): F−1

t ∈ C1(U,Rd) since Ft is a diffeomorphism on U . Moreover, DFt(y) is

regular for all y ∈ ∂U , if one considers the continuous extension of DFt to Ū . This is true because
due to (3) we know that ‖I−DFt(y′)‖ ≤ C < 1 for all y′ ∈ U and therefore ‖I−DFt(y)‖ ≤ C < 1
too. Thus, we may for y ∈ ∂U define F−1

t (y) := y and D(F−1
t )(y) := (DFt(y))−1, a candidate for

the C1-extension of F−1
t . Let t ∈ T be fixed, yn → y∗ with (yn)n ⊂ U , y∗ ∈ ∂U . Assume

F−1
t (yn) =: xn 9 y∗ = F−1

t (y∗),

then (xn)n has a subsequence (xnk)k → x′ ∈ Ū\{y∗}. If x′ ∈ U , then ynk := Ft(xnk)→ Ft(x
′) ∈ U ,

a contradiction; and if x′ ∈ ∂U\{y∗}, then ynk → Ft(x
′) = x′, a contradiction, hence, F−1

t ∈
C(Ū ,Rd). Using this, we find

yn → y∗ ⇒ F−1
t (yn)→ y∗ ⇒ DFt(F

−1
t (yn))→ DFt(y∗)⇒ D(F−1

t )(yn)→ D(F−1
t )(y∗)

as a result of the definition made above; consequently, F−1
t ∈ C1(Ū ,Rd).
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It remains to show that
tn → t∗ ⇒ F−1

tn → F−1
t∗ in C1.

For this case, assume first that F−1
tn 9 F−1

t∗ in C0, i.e.

∃ε > 0 ∀N ∈ N ∃nN ≥ N, yN ∈ Ū : ‖F−1
tnN

(yN )− F−1
t∗ (yN )‖ ≥ ε.

Then there exists a sequence (Nk)k such that

ynk → y, xNk := F−1
tnNk

(yNk)→ x ∈ Ū and xNk,∗ := F−1
t∗ (yNk)→ x∗ ∈ Ū .

In addition, we know that Ftn(xn) → Ft(x) for tn → t and xn → x. All together, we find
‖x− x∗‖ ≥ ε > 0 due to the assumption above and that

y = lim
k→∞

yNk = lim
k→∞

FtnNk
(xNk) = Ft∗(x) and

y = lim
k→∞

yNk = lim
k→∞

Ft∗(xNk,∗) = Ft∗(x∗),

a contradiction to the injectivity of Ft∗ . In order to show that D(F−1
tn ) → D(F−1

t∗ ) in C0, we

observe that F−1
tn (y) → F−1

t∗ (y) uniformly in y. Again using that DFtn(xn) → DFt(x) for tn → t

and xn → x, one finds that DFtn(F−1
tn (y))→ DFt∗(F

−1
t∗ (y)) uniformly in y and hence

(DFtn(F−1
tn (y)))−1 → (DFt∗(F

−1
t∗ (y)))−1 uniformly in y.

t 7→ It ∈ C1(T , C(Ū)): We first need to show that det : Rd×d → R is a C1-function. But since for a

matrix A = (aij)ij ∈ Rd×d the representation

detA =
∑
σ∈Sn

sign(σ)

d∏
k=1

aσ(k),k

holds, which consists of sums and products of functions which themselves depend continuously
differentiable on A, the claim follows and It ∈ C(Ū).

Now, let tn → t∗, then ‖DFtn −DFt∗‖C0 = |tn − t∗|‖Dh‖C0 → 0 and, consequently, Itn → It∗ in
C0. In addition,

d

dt
It|t=t0 = (D det(DFt0))Dh where D det(DFt0) ∈ L(Rd×d,R) ∼= Rd×d,

however, the application of D det(DFt0) to Dh is not given by the usual matrix multiplication.
Nevertheless, we have∥∥∥∥ ddtIt|t=tn − d

dt
It|t=t∗

∥∥∥∥
C0

= max
x∈Ū
|(D det(DFtn))Dh(x)− (D det(DFt∗))Dh(x)|

≤ max
x∈Ū
‖D det(DFtn)−D det(DFt∗)‖L(Rd×d,R)‖Dh(x)‖

→ 0

since det ∈ C1(Rd×d,R). This proves the claim.

t 7→ At ∈ C(T , C(Ū ,Rd×d)): At ∈ C(Ū ,Rd×d) since DFt, inverting and transposing of matrices are

continuous functions. For tn → t∗, we know that DFtn → DFt∗ in C0 and therefore Atn → At∗ in
C0 as desired.

t 7→ wt ∈ C(T , C(Γ)): Since Γ is of class C1,1, the vector n continuously depends on x ∈ Γ, and due to
the continuity of At and It, we have wt ∈ C(Γ). Now, let tn → t∗, then

‖wtn − wt∗‖C(Γ) = ‖Itn‖Atnn‖ − It∗‖At∗n‖‖C(Γ)

≤ ‖(Itn − It∗)‖Atnn‖‖C(Γ) + ‖It∗(‖Atnn‖ − ‖At∗n‖)‖C(Γ)

≤ ‖Itn − It∗‖C(Γ)‖Atnn‖C(Γ,Rd×d) + ‖It∗‖C(Γ)‖(Atn −At∗)n‖C(Γ,Rd×d)

→ 0

due to the properties of It and At.
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Calculation of the derivatives: Some of the derivatives can be easily calculated using also the derivative
of the matrix inversion inv : GLn(R)→ GLn(R), A 7→ A−1 for which the directional derivative is given
by D inv(A)δA = −A−1δAA−1 for all δA ∈ Rd×d.

d

dt
Ft|t=0 = lim

∆t→0

id+ h∆t− id
∆t

= h,

d

dt
F−1
t |t=0 = lim

∆t→0

F−1
∆t − F

−1
0

∆t
= lim

∆t→0

(id+ h∆t+ o1(∆t))−1 − id
∆t

= lim
∆t→0

id− h∆t− o1(∆t) + o2(h∆t+ o1(∆t))− id
∆t

= −h+ lim
∆t→0

o2(h∆t+ o1(∆t))

‖h∆t+ o1(∆t)‖
‖h∆t+ o1(∆t)‖

∆t
= −h,

d

dt
DFt|t=0 = lim

∆t→0

I +Dh∆t− I
∆t

= Dh,

d

dt
ATt |t=0 =

d

dt
(DFt)

−1|t=0 = −I−1

(
d

dt
(DFt)|t=0

)
I = −Dh.

For a matrix A ∈ Rd×d, we have D det(A) ∈ L(Rd×d,R), hence, D det(A) can be considered as a
matrix again. But the question is, what are the entries in this matrix and how can the application of
D det(A) to a matrix h ∈ Rd×d be described? The result may be intuitive, but nevertheless, we will
prove it in detail. For this, we claim that for a function f ∈ C1(Rd×d,R) and matrices A, h ∈ Rd×d the
following holds:

Df(A) =

(
∂

∂Xij
f(X)|X=A

)
ij

and Df(A)h =

d∑
i=1

d∑
j=1

∂

∂Xij
f(X)|X=Ahij . (6)

Obviously, Df(A)h defines a bounded linear operator on Rd×d since f is continuously differentiable. To
verify that this bounded linear operator is also the derivative of f at A, we show that

lim
h→0

1

‖h‖

f(A+ h)− f(A)−
d∑
i=1

d∑
j=1

∂

∂Xij
f(X)|X=Ahij

 = 0.

We define the following matrices

hij := (h′kl)kl where h′kl :=

{
hkl if k < i or (k = i and l ≤ j)
0 otherwise

which are identical to h up to a certain index and zero afterwards. Using the notation hij− for the matrix
which is equal to hij except with a further zero at the ”last” nontrivial entry of hij , we find

1

‖h‖

f(A+ h)− f(A)−
d∑
i=1

d∑
j=1

∂

∂Xij
f(A)hij

 =

1

‖h‖

 d∑
i=1

d∑
j=1

f(A+ hij)− f(A+ hij−)−
d∑
i=1

d∑
j=1

∂

∂Xij
f(A)hij

 =

1

‖h‖

 d∑
i=1

d∑
j=1

∂

∂Xij
f(A+ hij−)hij −

d∑
i=1

d∑
j=1

∂

∂Xij
f(A)hij

 =

d∑
i=1

d∑
j=1

(
∂

∂Xij
f(A+ hij−)− ∂

∂Xij
f(A)

)
hij
‖h‖
→ 0
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since the second factor in every summand is bounded while the first converges to zero.
If we apply this to the C1-function det : Rd×d → R, we have to calculate the partial derivative of det

with respect to every matrix entry. But using the Laplace-formula, one finds

D det(A) =

(
∂

∂Xij
det(X)|X=A

)
ij

=
(
(−1)i+jδij

)
ij

where δij is the determinant of the matrix A without row i and column j. Now, the remaining derivatives
can be easily calculated, but we shall use the symbol · to denote the sum over the componentwise product
of two matrices, just in analogy to the representation in (6).

d

dt
It|t=0 = D det(DFt|t=0) · d

dt
DFt|t = 0 = D det(I) ·Dh = I ·Dh = div h,

d

dt
wt|t=0 =

(
d

dt
It|t=0

)
‖Atn|t=0‖+ It|t=0

(Atn)T

‖Atn‖
|t=0

(
d

dt
At|t=0

)
n =

= div h|Γ + nT (−(Dh)T )n = divΓ h.

Finally, the proof of the proposition is finished.

Remark 2.7. The above calculations also show that each derivative exists uniformly in x, i.e. there is
no explicit dependence on the spatial variable x ∈ Ū .

Corollary 2.8. There exist constants α, β > 0 such that

α ≤ It(x) ≤ β

for all t ∈ T and x ∈ Ū .

Proof. I0(x) = 1 for all x ∈ Ū and It(x) 6= 0 for all x ∈ Ū and t ∈ T since DFt(x) is regular for those t
and x. Due to Proposition 2.6, the function It continuously depends on the parameter t; therefore, the
claim follows from the compactness of Ū and T .

3 The Shape Derivative

Lemma 3.1. 1. Let ϕt ∈ L1(Ωt), then ϕt ◦ Ft ∈ L1(Ω) and∫
Ωt

ϕtdxt =

∫
Ω

ϕt ◦ Ft detDFt dx.

2. Let ψt ∈ L1(Γt), then ψt ◦ Ft ∈ L1(Γ) and∫
Γt

ψtdΓt =

∫
Γ

ψt ◦ Ft detDFt ‖(DFt)−Tn‖ dΓ.

Proof. 1. This is a well-known result of advanced analysis. A proof can be found in [Jos05].

2. In the following, the main steps of the proof are described which is presented in [IKPb]. We start
with an arbitrary d − 1-dimensional submanifold M ⊂ Rd and a set U ⊂ M open in M which is
parametrized via ϕ : S → U with S ⊂ Rd−1 open. Similar to the first statement of the Lemma, a
function f : M → R with supp f ⊂ U is integrable over U if f ◦ ϕ (det(DϕTDϕ))1/2 is integrable
over S and thus ∫

U

f(x)dM :=

∫
S

(f ◦ ϕ)(t)(det(Dϕ(x)TDϕ(x)))1/2dt

is well-defined.

Furthermore, a technical result is necessary stating the following. Let X := (x1, ..., xd−1) ∈ Rd×d−1

be a matrix with linearly independent columns, then n ∈ Rd defined via

ni := (−1)i−1 detX (̂i),
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where X (̂i) ∈ Rd−1×d−1 is the matrix X without row i, is orthogonal to the hyperplane spanned
by x1, ..., xd−1; moreover,

‖n‖ = (det(XTX))1/2.

The orthogonality of n to all the vectors xi, i ∈ {1, ..., d− 1} is clear, since for an i ∈ {1, ..., d− 1}
the inner product

(n, x1) =

d∑
i=1

nix1i = det(X,x1) = 0.

This is a consequence of the Laplace-formula and the fact that xi appears twice as a column in
(X,xi). The more difficult part is for sure the representation of the norm of n, equivalently, this
reads

d∑
i=1

det(X (̂i)TX (̂i)) = det(XTX).

For a proof of this claim see [Mun91]. We shall now use this result and focus on the special situation
in the statement we want to show.

By the assumption stated at the beginning of Section 1, Γ = ∂D is the C1,1-boundary of a domain
D satisfying D̄ ⊂ U . Hence, one finds sets O1, ..., On ⊂ Rd, which are open in Rd and cover Γ,
together with C1,1-diffeomorphisms c1, ..., cn, ci : Oi → B(0, 1) such that

ci(D ∩Oi) = {x ∈ B(0, 1) | xn ≤ 0} and ci(Γ ∩Oi) = {x ∈ B(0, 1) | xn = 0}.

So, the d − 1-dimensional manifold Γ is locally transformed into the unit sphere S0 := {x′ ∈
Rd−1 | ‖x′‖ ≤ 1} in Rd−1 considered as a subset of the d-dimensional unit sphere. Now, we know
that each ci has a C1,1-inverse function hi, which we further restrict to {x ∈ B(0, 1) | xn = 0} and
denote it then with h̃i. Consequently, the functions h̃i : S0 → Γ ∩ Oi define local patches of Γ;
thus, the compositions Ft ◦ h̃i : S0 → Ft(Γ) ∩ Ft(Oi) define local pathches of Γt.

Now, if the transformation rule is proven for any ψt with suppψt ⊂ Ft(Γ)∩Ft(Oi) and i arbitrarily,
then the proof is finished, since one can choose an appropriate partition of unity and apply the
result to each Ft(Γ) ∩ Ft(Oi). Consequently, we consider from now on only one of these patches
and omit the index i, according to [IKPb].

We define the function ñ via

ñ ◦ h := (detDh)(Dh)−T ed : {x ∈ B(0, 1) | xn = 0} → Rd

and find that
(ñ ◦ h)i = (−1)n+i det(Dx′h(̂i))

due to the representation of the inverse of a matrix. Using the auxiliary result from above, we
conclude that ñ ◦ h is orthogonal to Γ with norm

(det(Dx′ h̃
TDx′ h̃))1/2 = ‖ñ ◦ h‖ = |detDh|

∥∥(Dh)−T ed
∥∥ . (7)

Moreover, by definition of ñ ◦ h, we deduce

D(Ft ◦ h)−T ed = ((DFt ◦ h)Dh)
−T

ed =
(
(DFt)

−T ◦ h
)

(Dh)−T ed

=
(
(DFt)

−T ◦ h
)

(detDh)−1(ñ ◦ h)

= (detDh)−1
((

(DFt)
−Tn

)
◦ h
)

(‖ñ‖ ◦ h);

here n denotes the exterior unit normal of Γ = ∂D. We may assume that ñ ◦ h is a normal vector
pointing to the exterior of D, otherwise one can replace ñ ◦ h by −ñ ◦ h, which yieds the same
result in the above calculation. In the following, we collect these preparations and start with the
definition of the surface integral; in addition, we replace h̃ by Ft ◦ h̃ in equation (7) and make use
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of Corollary 2.8. All together, we find∫
Γt

ψt(xt)dΓt =

∫
S0

ψt ◦ (Ft ◦ h̃)
(

det
(
Dx′(Ft ◦ h̃)TDx′(Ft ◦ h̃)

))1/2

dx′

=

∫
S0

ψt ◦ (Ft ◦ h̃)|det(D(Ft ◦ h))|
∥∥(D(Ft ◦ h))−T ed

∥∥ dx′
=

∫
S0

ψt ◦ (Ft ◦ h̃)|det((DFt ◦ h)Dh)||det(Dh)|−1
∥∥(DFt)

−Tn
∥∥ ◦ h‖ñ‖ ◦ hdx′

=

∫
S0

ψt ◦ (Ft ◦ h̃) det(DFt ◦ h)
∥∥(DFt)

−Tn
∥∥ ◦ h‖ñ‖ ◦ hdx′

=

∫
S0

(ψt ◦ Ft) ◦ h̃det(DFt) ◦ h
∥∥(DFt)

−Tn
∥∥ ◦ h(det(Dx′ h̃

TDx′ h̃)
)1/2

dx′

=

∫
Γ

ψt ◦ Ft det(DFt)
∥∥(DFt)

−Tn
∥∥ dΓ,

which finishes the proof.

Theorem 3.2. Let (H1) - (H5) be true and assume that the adjoint equation

〈Eu(u,Ω)ψ, p〉X∗×X − (j′1(u), ψ)Ω − (j′2(u), ψ)Γ − (j′3(u), ψ)∂Ω\Γ = 0, ψ ∈ X (8)

has a unique solution p ∈ X, with u the solution of (2).
Then the Eulerian derivative of J at Ω in the direction h, dJ(u,Ω,Γ)h, exists and

dJ(u,Ω,Γ)h = − d

dt
〈Ẽ(u, t), p〉X∗×X |t=0 +

∫
Ω

j1(u) div h dx+

∫
Γ

j2(u) divΓ h ds.

Proof. At first, (H2) implies that there exist unique solutions ut ∈ X and u ∈ X to Ẽ(ut, t) = 0
respectively E(u,Ω) = 0 for all t ∈ T . Thus, ut = ut ◦ F−1

t satisfies E(ut,Ωt) = 0. The idea is now to
apply Lemma 3.1, and to add and subtract appropriate terms in a useful way. This reads

1

t
(J(ut,Ωt,Γt)− J(u,Ω,Γ)) (9)

=
1

t

∫
Ω

(Itj1(ut)− j1(u))dx+

∫
Γ

(wtj2(ut)− j2(u))ds+

∫
∂Ω\Γ

(j3(ut)− j3(u))ds

=
1

t

∫
Ω

(It(j1(ut)− j1(u)− j′1(u)(ut − u)) + (It − 1)j′1(u)(ut − u) + j′1(u)(ut − u) + (It − 1)j1(u))dx

+
1

t

∫
Γ

(wt(j2(ut)− j2(u)− j′2(u)(ut − u)) + (wt − 1)j′2(u)(ut − u) + j′2(u)(ut − u) + (wt − 1)j2(u))ds

+
1

t

∫
∂Ω\Γ

((j3(ut)− j3(u)− j′3(u)(ut − u)) + j′3(u)(ut − u))ds,

where the integrals over ∂Ω\Γ do not need a transformation since ∂Ωt\Γt = ∂Ω\Γ per construction.
As a result of Proposition 2.6, the functions It and wt are bounded for each t ∈ T , hence, there exist
constants c1, c2 > 0 such that It(x) ≤ c1 and wt ≤ c2 for all x ∈ Ω, y ∈ Γ, t ∈ T . Therefore, Lemma 2.3
yields the following estimates with a generic constant c > 0 for each inequality independent of t.∣∣∣∣∫

Ω

It(j1(ut)− j1(u)− j′1(u)(ut − u))dx

∣∣∣∣ ≤ c1

∫
Ω

∣∣j1(ut)− j1(u)− j′1(u)(ut − u)
∣∣ dx ≤ c‖ut − u‖2X ,∣∣∣∣∫

Γ

wt(j2(ut)− j2(u)− j′2(u)(ut − u))dx

∣∣∣∣ ≤ c2

∫
Γ

∣∣j2(ut)− j2(u)− j′2(u)(ut − u)
∣∣ dx ≤ c‖ut − u‖2X ,∣∣∣∣∣

∫
∂Ω\Γ

(j3(ut)− j3(u)− j′3(u)(ut − u))dx

∣∣∣∣∣ ≤ c‖ut − u‖2X . (10)
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We further use the adjoint equation and the adjoint state p together with the fact that Ẽ(ut, t) =
Ẽ(u, 0) = 0 in X∗ to find

(j′1(u), ut − u)Ω + (j′2(u), ut − u)Γ + (j′3(u), ut − u)∂Ω\Γ = 〈Eu(u,Ω)(ut − u), p〉X∗×X (11)

= −〈E(ut,Ω)− E(u,Ω)− Eu(u,Ω)(ut − u), p〉X∗×X
− 〈Ẽ(ut, t)− Ẽ(u, t)− E(ut,Ω) + E(u,Ω), p〉X∗×X
− 〈Ẽ(u, t)− Ẽ(u, 0), p〉X∗×X .

Now, we use the assumptions (H1) - (H4) and Proposition 2.6 to estimate the ten summands appearing
at the end of equations (9). In detail, the terms one, five and nine converge to zero due to equations
(10) and (H2) since

lim
t→0

c‖ut − u‖2X
t

= c

(
lim
t→0

‖ut − u‖X
t1/2

)2

= 0.

Similarly, the terms two and six converge to zero as a result of Proposition 2.6 and (H2) as

lim
t→0

(It − 1)j′1(u)(ut − u)

t
= div h j′1(u) lim

t→0
(ut − u) = 0 and

lim
t→0

(wt − 1)j′2(u)(ut − u)

t
= divΓ h j

′
2(u) lim

t→0
(ut − u) = 0.

The terms four and eight establish the two integrals in the final formula because Proposition 2.6 yields

lim
t→0

(It − 1)j1(u)

t
= div h j1(u) and

lim
t→0

(wt − 1)j2(u)

t
= divΓ h j2(u).

Finally, the remaining terms three, seven and ten sum up to the last part of equations (11) divided
through t. As a consequence of (H3),

lim
t→0

1

t
〈E(ut,Ω)− E(u,Ω)− Eu(u,Ω)(ut − u), p〉X∗×X =

lim
t→0

(
1

‖ut − u‖2X
〈E(ut,Ω)− E(u,Ω)− Eu(u,Ω)(ut − u), p〉X∗×X

‖ut − u‖2X
t

)
= 0

since the first part of the product is bounded and the second part converges to zero due to (H2). In
addition,

lim
t→0

1

t
〈Ẽ(ut, t)− Ẽ(u, t)− E(ut,Ω) + E(u,Ω), p〉X∗×X = 0

as an immediate consequence of assumption (H4). Thus, the only nontrivial part coming from equations
(11) is the negative of the derivative of Ẽ with respect to the variable t, which results in

lim
t→0

1

t

(
(j′1(u), ut − u)Ω + (j′2(u), ut − u)Γ + (j′3(u), ut − u)∂Ω\Γ

)
= − d

dt
〈Ẽ(u, t), p〉X∗×X |t=0.

This shows the desired representation of the derivative of J and completes the proof.

Remark 3.3. A closer look at the proof of Theorem 3.2 shows that the assumption (H1) is not used in
its full strength; a weaker formulation containing only the necessary parts reads as follows.

(H1’) There exists a Hilbert space X and a function Ẽ : X × (−τ, τ)→ X∗ such that

• With u and p the solutions of equation (2) respectively equation (8) the following holds.

– v → 〈Ẽ(v, 0), p〉X∗×X is differentiable at v = u,

– t→ 〈Ẽ(u, t), p〉X∗×X is differentiable at t = 0.

• E(ut,Ωt) = 0 is equivalent to Ẽ(ut, t) = 0 in X∗

• Ẽ(u, 0) = E(u,Ω) for all u ∈ X.
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We additionally introduce the following assumption.

(H6) For every f ∈ X∗, the linearized equation

〈Eu(u,Ω)p, ψ〉X∗×X = 〈f, ψ〉X∗×X , ψ ∈ X

has a unique solution p ∈ X, provided equation (2) admits a unique solution u.

Proposition 3.4. If equation (2) has a unique solution u and both (H1) and (H6) hold, then (H2) holds.

Proof. Together with u, the unique solution of E(u,Ω) = Ẽ(u, 0) = 0, we find at first that

Ẽu(u, 0) = Eu(u,Ω)

since Ẽ(v, 0) = E(v,Ω) for all v ∈ X. (H6) now yields that Eu(u,Ω) is bijective and, hence, Ẽu(u, 0)
is bijective. We now have three Banach-spaces X, X∗ and R, an open subset X × (−τ, τ) of X × R,
a continuously differentiable function Ẽ : X × (−τ, τ) → X∗ and an element (u, 0) ∈ X × (−τ, τ) such
that Ẽ(u, 0) = 0 and Ẽu(u, 0) ∈ L(X,X∗) is an isomorphism between X and X∗. The latter is true
due to the theorem about the continuous inverse stating that the inverse of a bijective bounded linear
operator between Banach spaces is also a bounded linear operator. Hence, the generalized implicit
function theorem [Jos05] can be applied and one finds that there exist neighbourhoods U ⊂ X of u and
(−τ0, τ0) ⊂ (−τ, τ) of 0 and a differentiable function g : (−τ0, τ0)→ U such that

Ẽ(g(t), t) = 0 for all t ∈ (−τ0, τ0).

Moreover, g(t) is the only solution of Ẽ(ut, t) = 0 in U for all t ∈ (−τ0, τ0). Therefore, there exists a
unique solution ut := g(t) ∈ U for |t| < τ0, which satisfies

‖ut − u0‖X = ‖g(t)− g(0)‖X = ‖DG(0)t+ o(t)‖X .

Consequently,

0 ≤ ‖u
t − u0‖X
t1/2

≤ ‖Dg(0)‖L(R,X)t
1/2 + ‖o(t)

t
‖Xt1/2 → 0 for t→ 0

and

lim
t→0

‖ut − u0‖X
t1/2

= 0,

which also shows the convergence of ut in the sense stated in (H2).

Lemma 3.5. Let U have a C1-boundary, then the following assertions are true.

1. If u ∈ Lp(U), then t 7→ u ◦ F−1
t ∈ C(T , Lp(U)) for all 1 ≤ p <∞.

2. If u ∈ H2(U), then u ◦ F−1
t ∈ H2(U). Moreover,

d

dt
(u ◦ F−1

t )|t=0 = −(Du)h exists in H1(U) and

d

dt
(D(u ◦ F−1

t ))|t=0 = −D((Du)h) exists in L2(U).

Proof. Below, we will use several times that F−1
t is a C1-diffeomorphism on U for every fixed t ∈ T and

also that t 7→ F−1
t ∈ C(T , C1(Ū ,Rd)).

1. As a result of Lemma 3.1, up ∈ L1(U) implies up ◦F−1
t ∈ L1(U), hence u ◦F−1

t ∈ Lp(U). In order
to prove the continuous dependence of u ◦ F−1

t on t in Lp(U), we show the following:

∀ε > 0 ∃δ > 0 ∀s, t ∈ T |t− s| < δ ⇒ ‖u ◦ F−1
t − u ◦ F−1

s ‖Lp(U) < ε.

We know there exists a sequence (um)m ⊂ C(Ū) with um → u in Lp(U) [Jos05]. Now, choose
ε > 0 arbitrarily and m ∈ N such that ‖u − um‖Lp(U) < ε. Since um is uniformly continuous,
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|um(x) − um(y)| < ε if ‖x − y‖ < δ̄ where δ̄ = δ̄(ε) > 0. In addition, t 7→ Ft
−1 is uniformly

continuous on the compact interval T , hence, there exists a δ > 0 such that ‖Ft−1−F−1
s ‖C(Ū,Rd) < δ̄

if |t− s| < δ with t, s ∈ T . Thus, using also Corollary 2.8 and Lemma 3.1, one deduces for t, s ∈ T
with |t− s| < δ that

‖u ◦ F−1
t − u ◦ F−1

s ‖Lp(U)

≤ ‖u ◦ F−1
t − um ◦ F−1

t ‖Lp(U) + ‖um ◦ F−1
t − um ◦ F−1

s ‖Lp(U) + ‖um ◦ F−1
s − u ◦ F−1

s ‖Lp(U)

=

(∫
Ω

|u− um|pItdx
)1/p

+

(∫
Ω

|um(F−1
t )− um(F−1

s )|pdx
)1/p

+

(∫
Ω

|u− um|pIsdx
)1/p

≤
(
β

∫
Ω

|u− um|pdx
)1/p

+

(∫
Ω

εpdx

)1/p

+

(
β

∫
Ω

|u− um|pdx
)1/p

= β1/p‖u− um‖Lp(U) + ε|Ω|+ β1/p‖u− um‖Lp(U)

< (2β1/p + |Ω|)ε

which proves the claim.

2. First, we show that for f ∈ H1(U) and g ∈ C0,1(U) the product satisfies fg ∈ H1(U). Since g is
Lipschitz-continuous on U , which has also a C1-boundary, we know that g ∈ W 1,∞(U) [Eva10].
Therefore, ∫

Ω

(fg)2dx ≤ ‖f2‖L1(U)‖g2‖L∞(U) <∞,∫
Ω

((fg)′)
2
dx =

∫
Ω

(f ′g)2dx+ 2

∫
Ω

ff ′gg′dx+

∫
Ω

(fg′)2dx

≤ ‖f ′‖2L2(U)‖g‖
2
L∞(U) + 2‖f‖L2(U)‖f ′‖L2(U)‖g‖L∞(U)‖g′‖L∞(U) + ‖f‖2L2(U)‖g

′‖2L∞(U)

< ∞.

Additionally, on can use a result from [KJF77] which states the following:

Let G,O ⊂ Rn be bounded and open and let T : G→ O be surjective with

d‖x− y‖ ≤ ‖T (x)− T (y)‖ ≤ c‖x− y‖

for all x, y ∈ G with constants c, d > 0. Then

u ∈ H1(O)⇒ u ◦ T ∈ H1(G).

Since F−1
t : U → U satisfies the above conditions, we deduce that for all v ∈ H1(U) the composition

v ◦ F−1
t ∈ H1(U) is in the same space.

Now, let u ∈ H2(U), thenDu ∈ H1(U,Rd), henceDu(F−1
t ) ∈ H1(U,Rd) and (Du(F−1

t ))D(Ft−1) ∈
H1(U,Rd) due to the fact that F−1

t ∈ C1,1(Ū ,Rd) and, consequently, D(F−1
t ) ∈ C0,1(Ū ,Rd×d).

For sure, the result from [KJF77] can be applied to each component of vector- or matrix-valued
function. All toghether, one concludes that

D(u ◦ F−1
t ) = Du(F−1

t )D(F−1
t ) ∈ H1(U)

and, therefore, u ◦ F−1
t ∈ H2(U).

In order to show the remaining two identities, we follow the proof of an even more general result
given in [IKPb]. At the beginning, we show that

(u ◦ F−1
t )(x)− u(x) = −t

∫ 1

0

Du(x+ sth(x))h(x)ds (12)
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in L2(U) where h ∈ C1,1(Ū ,Rd), h|∂U = 0 and Ft = id+ th. Since C∞(U) is dense in H2(U) with
respect to the H2-norm, there exists a uε ∈ C∞(U) with ‖u− uε‖H2(U) < ε. Then one finds∥∥∥∥u ◦ F−1

t − u+ t

∫ 1

0

Du(·+ sth)hds

∥∥∥∥
L2(U)

≤ ‖u ◦ F−1
t − uε ◦ F−1

t ‖L2(U) + ‖uε − u‖L2(U)

+

∥∥∥∥uε ◦ F−1
t − uε + t

∫ 1

0

Duε(·+ sth)hds

∥∥∥∥
L2(U)

+

∥∥∥∥t∫ 1

0

‖Duε(·+ sth)−Du(·+ sth)‖ds
∥∥∥∥
L2(U)

‖h‖L∞(U) → 0

for ε → 0. This is true since the first two terms tend to zero due to the assumption and Lemma
3.1. The third term is zero anyway and the fourth term converges to zero due to the assumption
and the boundedness of U . Using this expansion for the function u, we find∥∥∥∥1

t

(
u ◦ F−1

t − u
)

+ (Du)h

∥∥∥∥2

L2(U)

≤
∫

Ω

∫ 1

0

|Du (x+ sth(x))−Du(x)|2|h(x)|2dsdx→ 0

for t→ 0 using the first part of this lemma and the dominated convergence theorem together with
the boundedness of U . Hence, t 7→ u ◦ F−1

t is differentiable at t = 0 in L2(U) with derivative
−(Du)h. In order to show that −(Du)h is also the derivative with respect to the H1-topology,
we have to show the corresponding convergence also for the weak derivatives in the L2(U)-norm.
For this case, we calculate the weak derivative of the right- (and hence left-) hand-side of equation
(12), where we use integration by parts and the theorem of Fubini. Let ϕ ∈ C∞0 (U), then〈

∂

∂xi

∫ 1

0

Du(·+ sth)hds, ϕ

〉
= −

∫
Ω

∫ 1

0

Du(x+ sth(x))h(x)ds
∂

∂xi
ϕ(x)dx = −

∫ 1

0

∫
Ω

Du(x+ sth(x))h(x)
∂

∂xi
ϕ(x)dxds =

=

∫ 1

0

∫
Ω

 d∑
k=1

d∑
j=1

∂2

∂xk∂xj
u(x+ sth(x))

(
δij + st

∂

∂xi
hj(x)

)
hk(x)


+

(
d∑
k=1

∂

∂xk
u(x+ sth(x))

∂

∂xi
hk(x)

)
ϕ(x)dxds =

=

∫ 1

0

∫
Ω

(
h(x)TD2u(x+ sth(x))(I + stDh(x))i +Du(x+ sth(x))(Dh(x))i

)
ϕ(x)dxds

=

∫
Ω

∫ 1

0

(
h(x)TD2u(x+ sth(x))(I + stDh(x))i +Du(x+ sth(x))(Dh(x))i

)
dsϕ(x)dx

=

〈∫ 1

0

(
hTD2u(·+ sth)(I + stDh)i +Du(·+ sth)(Dh)i

)
ds, ϕ

〉
.

Using this weak derivative, we deduce analogously to above that∥∥∥∥D(1

t
(u ◦ F−1

t − u) + (Du)h

)∥∥∥∥2

L2(U)

≤
∫

Ω

∫ 1

0

‖ − h(x)TD2u(x+ sth(x))(I + stDh(x))−Du(x+ sth(x))Dh(x)

+ h(x)TD2u(x) +Du(x)Dh(x)‖2dsdx

≤
∫

Ω

∫ 1

0

‖h(x)T
(
D2u(x+ sth(x))(I + stDh(x))−D2u(x)

)
‖2dsdx

+

∫
Ω

∫ 1

0

‖ (Du(x+ sth(x))−Du(x))Dh(x)‖2dsdx→ 0
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for t→ 0 again using the first part of the lemma and the dominated convergence theorem.

The last assertion stated in the lemma is an immediate consequence of the calculations above, since∥∥∥∥(1

t
(D(u ◦ F−1

t )−Du) +D((Du)h)

)∥∥∥∥2

L2(U)

=

∥∥∥∥D(1

t
(u ◦ F−1

t − u) + (Du)h

)∥∥∥∥2

L2(U)

→ 0

which shows that −D((Du)h) is the desired derivative with respect to the L2-topology.

Lemma 3.6. 1. Let f ∈ C(T ,W 1,1(U)) and assume that ft(0) exists in L1(U), then

d

dt

∫
Ωt

f(t, x)dxt|t=0 =

∫
Ω

ft(0, x)dx+

∫
Γ

f(0, x)h · ndΓ.

2. Let f ∈ C(T ,W 2,1(U)) and assume that ft(0) exists in W 1,1(U), then

d

dt

∫
Γt

f(t, x)dΓt|t=0 =

∫
Γ

ft(0, x)dΓ +

∫
Γ

(
∂

∂n
f(0, x) + κf(0, x)

)
h · ndΓ,

where κ denotes the additive curvature of Γ, i.e. the sum of the d− 1 principal curvatures of Γ.

Proof. Below we will present the main steps of the proof given in [Pei06].

1. One starts with inserting some useful terms in the following difference quotient which results in

1

t

(∫
Ωt

f(t, x)dxt −
∫

Ω

f(0, x)dx

)
=

1

t

∫
Ω

(Itf(t, Ft(x))− f(0, x))dx

=

∫
Ω

It − 1

t
f(t, Ft(x))dx+

1

t

∫
Ω

(f(t, Ft(x))− f(t, x))dx

+
1

t

∫
Ω

f(t, x)− f(0, x)dx =: Xt + Yt + Zt

Now, we show that

lim
t→0

Xt =

∫
Ω

f(0, x) div h dx

via considering that the difference∣∣∣∣Xt −
∫

Ω

f(0, x) div h dx

∣∣∣∣
≤

∣∣∣∣∫
Ω

(
It − 1

t
− div h)f(t, Ft(x)

)
dx

∣∣∣∣+

∣∣∣∣∫
Ω

(f(t, Ft(x))− f(0, x)) div h dx

∣∣∣∣
≤ max

x∈Ω̄

∣∣∣∣It(x)− 1

t
− div h(x)

∣∣∣∣ ∫
Ω

|f(t, Ft(x))|dx+ max
x∈Ω̄
|div h(x)|

∫
Ω

|f(t, Ft(x))− f(0, x)|dx→ 0

for t → 0 due to Proposition 2.6 and the fact that t 7→ f(t, Ft(·)) = f(t) ◦ Ft ∈ C(T , L1(U)), for
details see [Pei06]. We next show that

lim
t→0

Yt =

∫
Ω

Df(0, x)h(x)dx.
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For this case we apply the integral-mean-value-theorem to find∣∣∣∣Yt − ∫
Ω

Df(0, x)h(x) dx

∣∣∣∣
=

∣∣∣∣∫
Ω

(∫ 1

0

Df(t, x+ s(Ft(x)− x))
Ft(x)− x

t
ds−Df(0, x)h(x)

)
dx

∣∣∣∣
≤

∣∣∣∣∫
Ω

∫ 1

0

Df(t, x+ s(Ft(x)− x))ds

(
Ft(x)− x

t
− h(x)

)
dx

∣∣∣∣
+

∣∣∣∣∫
Ω

∫ 1

0

(Df(t, x+ s(Ft(x)− x))−Df(0, x)) dsh(x)dx

∣∣∣∣
≤ max

x∈Ω̄

∥∥∥∥Ft(x)− x
t

− h(x)

∥∥∥∥∫ 1

0

∫
Ω

‖Df(t, x+ s(Ft(x)− x))‖dxds

+ max
x∈Ω̄
‖h(x)‖

∫ 1

0

∫
Ω

‖Df(t, x+ s(Ft(x)− x))−Df(0, x)‖dsdx→ 0

for t → 0 due to Proposition 2.6 and an additional result stating that t 7→ Df(t, x + s(Ft(x) −
x)) ∈ C(T , L1(U)) for all s ∈ [0, 1] and that {Df(t, x + s(Ft(x) − x)) | s ∈ [0, 1]} is uniformly
equicontinuous. For further details see again [Pei06]. Finally, we have

lim
t→0

Zt =

∫
Ω

ft(0, x)dx

as a direct consequence of the existence of ft(0) in L1(U), which is assumed to hold. Now, we
observe that∫

Ω

f(0, x) div h dx+

∫
Ω

Df(0, x)h(x)dx =

∫
Ω

div(f(0, x)h)dx =

∫
Γ

f(0, x)h · ndΓ

where we used the Stokes formula [DZ11], which is applicable since Γ is of class C1,1 and thus, in
particular, Lipschitzean. Combining the results obtained above yields the desired transformation
formula.

2. Similar to the first part, we rearrange the difference quotient which gives

1

t

(∫
Γt

f(t, x)dΓt −
∫

Γ

f(0, x)dΓ

)
=

1

t

∫
Γ

(wtf(t, Ft(x))− f(0, x))dΓ

=

∫
Γ

wt − 1

t
f(t, Ft(x))dΓ +

1

t

∫
Γ

(f(t, Ft(x))− f(t, x))dΓ

+
1

t

∫
Γ

(f(t, x)− f(0, x))dΓ =: Xt + Yt + Zt

The first term results in

lim
t→0

Xt =

∫
Γ

f(0, x) divΓ h dΓ

as a consequence of∣∣∣∣Xt −
∫

Γ

f(0, x) divΓ h dΓ

∣∣∣∣
≤

∣∣∣∣∫
Γ

(
wt − 1

t
− divΓ h)f(t, Ft(x)

)
dΓ

∣∣∣∣+

∣∣∣∣∫
Γ

(f(t, Ft(x))− f(0, x)) divΓ h dΓ

∣∣∣∣
≤ max

x∈Γ

∣∣∣∣wt(x)− 1

t
− divΓ h(x)

∣∣∣∣ ∫
Γ

|f(t, Ft(x))|dΓ + max
x∈Γ
|divΓ h(x)|

∫
Γ

|f(t, Ft(x))− f(0, x)|dΓ

Using the fact that t 7→ f(t, Ft(·)) = f(t) ◦ Ft ∈ C(T ,W 1,1(U)) [Pei06], the trace theorem yields
that the mapping

t 7→ f(t, Ft(·)) = f(t) ◦ Ft ∈ C(T , L1(Γ)).
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Consequently, ∣∣∣∣Xt −
∫

Γ

f(0, x) divΓ h dΓ

∣∣∣∣→ 0

since ‖f(t, Ft(x))− f(0, x)‖L1(Γ) → 0 and ‖f(t, Ft(x))‖L1(Γ) is bounded for t→ 0. Next, we prove

lim
t→0

Yt =

∫
Γ

Df(0, x)h(x)dΓ.

Therefore, consider the estimate∣∣∣∣Yt − ∫
Γ

Df(0, x)h(x) dΓ

∣∣∣∣
=

∣∣∣∣∫
Γ

(∫ 1

0

Df(t, x+ s(Ft(x)− x))
Ft(x)− x

t
ds−Df(0, x)h(x)

)
dΓ

∣∣∣∣
≤

∣∣∣∣∫
Γ

∫ 1

0

Df(t, x+ s(Ft(x)− x))ds

(
Ft(x)− x

t
− h(x)

)
dΓ

∣∣∣∣
+

∣∣∣∣∫
Γ

∫ 1

0

(Df(t, x+ s(Ft(x)− x))−Df(0, x)) dsh(x)dΓ

∣∣∣∣
≤ max

x∈Γ

∥∥∥∥Ft(x)− x
t

− h(x)

∥∥∥∥∫ 1

0

∫
Ω

‖Df(t, x+ s(Ft(x)− x))‖dΓds

+ max
x∈Γ
‖h(x)‖

∫ 1

0

∫
Γ

‖Df(t, x+ s(Ft(x)− x))−Df(0, x)‖dsdΓ.

Applying once more that t 7→ Df(t, x + s(Ft(x) − x)) ∈ C(T ,W 1,1(U)) for all s ∈ [0, 1] and that
{Df(t, x+ s(Ft(x)− x)) | s ∈ [0, 1]} is uniformly equicontinuous [Pei06], the trace theorem results
in ∣∣∣∣Yt − ∫

Γ

Df(0, x)h(x) dΓ

∣∣∣∣→ 0

since ‖Df(t, x+ s(Ft(x)−x))−Df(0, x)‖L1(Γ) → 0 and ‖Df(t, x+ s(Ft(x)−x))‖L1(Γ) is bounded
for t → 0. As a consequence of the assumed existence of ft(0) in W 1,1(U), we know that ft(0)
exists in L1(Γ) due to the trace theorem and, therefore,

lim
t→0

Zt =

∫
Γ

ft(0, x)dΓ

So far, we have

d

dt

∫
Γt

f(t, x)dΓt|t=0 =

∫
Γ

(f(0, x) divΓ h(x) +Df(0, x)h(x))dΓ +

∫
Γ

ft(0, x)dΓ.

Moreover, we know that the tangential derivative, respectively divergence, is defined as

DΓf = (Df)Γ −
∂f

∂n
n, divΓ h = (div h)Γ − (Dh)n · n

and that the Green formula [DZ11] holds,∫
Γ

(f divΓ h+ (DΓf)h)dΓ =

∫
Γ

fκh · ndΓ.

Thus,

d

dt

∫
Γt

f(t, x)dΓt|t=0 =

∫
Γ

(f(0, x) divΓ h(x) +DΓf(0, x)h(x) +
∂f

∂n
h · n)dΓ +

∫
Γ

ft(0, x)dΓ

=

∫
Γ

(fκh · n+
∂f

∂n
h · n)dΓ +

∫
Γ

ft(0, x)dΓ

=

∫
Γ

ft(0, x)dΓ +

∫
Γ

(
∂

∂n
f(0, x) + κf(0, x)

)
h · ndΓ

which proves the claim.
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4 An Example

Let us investigate the following problem. Given a bounded C1,1-domain D ⊂ Rd, we consider a certain
heat-distribution u0 defined on Rd which we take as the initial value for the heat-equation at the time
t = 0. The heat-distribution u(t, x) with t ≥ 0 and x ∈ Rd can thus be directly calculated using u0 and
the heat-kernel. The task is now to determine the ”total heat” contained in D at the time t = 1 and to
find a representation for its dependence on the domain D.

In the framework of the last sections, we therefore have Ω = D and Γ = ∂Ω; besides, U ⊂ Rd may
be any bounded domain satisfying D̄ ⊂ U . Moreover, we choose X = L2(Ω), although the solutions to
the heat-equation are of class C∞(Rd) for any fixed t > 0. For our situation we define

u0(x) :=

{
1 if x ∈ D
0 otherwise

as the initial heat-distribution. Furthermore, the shape functional is given by

J(u,Ω) :=

∫
Ω

u dx

subject to

E(u,Ω) := u− 1

2
√
π

∫
Ω

e−
(·−ξ)2

4 dξ = 0.

In this case, E(u,Ω) represents an explicit formula for the state u but, nevertheless, one can treat this
constraint in the same way as we did in the last sections. In order to obtain an explicit representation
of Ẽ(ut, t), we do the following transformations for any ψ ∈ Xt := L2(Ωt).

〈E(ut,Ωt), ψt〉X∗t ×Xt =

∫
Ωt

ut(xt)ψt(xt)dxt −
1

2
√
π

∫
Ωt

∫
Ωt

e−
(ξt−xt)2

4 ψt(xt)dξtdxt

=

∫
Ωt

ut(xt)ψt(xt)dxt −
1

2
√
π

∫
Ωt

∫
Ω

e−
(Ft(ξ)−xt)2

4 ψt(xt)It(ξ)dξdxt

=

∫
Ω

ut(Ft(x))ψt(Ft(x))It(x)dx− 1

2
√
π

∫
Ω

∫
Ω

e−
(Ft(ξ)−Ft(x))2

4 ψt(Ft(x))It(ξ)It(x)dξdx

=

∫
Ω

ut(x)ψt(x)It(x)dx− 1

2
√
π

∫
Ω

∫
Ω

e−
(Ft(ξ)−Ft(x))2

4 ψt(x)It(ξ)It(x)dξdx

=: 〈Ẽ(ut, t), ψt〉X∗×X .

We further have to ensure that the assumptions (H1) - (H5) from the axiomatic description hold.
For (H1) observe that X is a Hilbert space and Ẽ(ut, t) is C1 in both arguments due to the C1-

smoothness of Ft and It in the parameter t. In addition, E(ut,Ωt) = 0 is equivalent to Ẽ(ut, t) = 0 and
Ẽ(u, 0) = E(u,Ω) for all u ∈ X are direct consequences of the definition of E and Ẽ.

Per construction, E(u,Ω) = 0 has trivially a unique solution u; moreover, (H6) is satisfied since

Eu(u,Ω)δu = (δu, ·)Ω

implies that 〈Eu(u,Ω)δu, ψ〉X∗×X = 〈f, ψ〉X∗×X with ψ ∈ X has a unique solution δu ∈ X for every
f ∈ X∗. Consequently, (H2) holds due to Proposition 3.4.

The assumption (H3) is trivially satisfied since E(v,Ω)− E(u,Ω)− Eu(u,Ω)(v − u) = 0 in X∗.
Let ψ ∈ X, then ∣∣∣∣1t 〈(Ẽ(ut, t)− Ẽ(u, t))− (E(ut,Ω)− E(u,Ω)), ψ〉X∗×X

∣∣∣∣
=

∣∣∣∣1t
(∫

Ω

(ut − u)ψItdx−
∫

Ω

(ut − u)ψdx

)∣∣∣∣ =

∣∣∣∣∫
Ω

ut − u
t

ψ(It − 1)dx

∣∣∣∣
≤

∥∥∥∥ut − ut1/2

∥∥∥∥
L2(Ω)

∥∥∥∥It − 1

t1/2

∥∥∥∥
L∞(Ω)

‖ψ‖L2(Ω) → 0
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due to (H2) and Proposition 2.6. Hence, (H4) holds.
Finally, (H5) is true since j1 = id ∈ C1,1(R,R). In addition, the adjoint equation

〈Eu(u,Ω)ψ, p〉X∗×X = (j′1(u), ψ)Ω, ψ ∈ X

which explicitly reads ∫
Ω

ψpdx =

∫
Ω

ψdx, ψ ∈ X

admits the unique solution p(x) = 1 with x ∈ Ω since Eu(u,Ω)δu = (δu, ·)Ω and j′1 = id.
Therefore, all assumptions made in Theorem 3.2 are satisfied and we know that the shape derivative

of J at the ”point” Ω exists in every ”direction” h ∈ C1,1(Ū ,Rd). In order to apply Theorem 3.2 , let us
first do the following calculation, where we consider the solution u and the adjoint state p as elements
of L2(U). As u is a C∞-function on U and p is constant on Ω, there are no difficulties with such an
extension.

d

dt
〈Ẽ(u, t), p〉X∗×X |t=0

=
d

dt

(∫
Ωt

u(F−1
t (xt))p(F

−1
t (xt))dxt −

1

2
√
π

∫
Ωt

∫
Ωt

e−
(ξt−xt)2

4 p(F−1
t (xt))dξtdxt

)
|t=0

=
d

dt

(∫
Ωt

u(F−1
t (xt))dxt −

1

2
√
π

∫
Ωt

∫
Ωt

e−
(ξt−xt)2

4 dξtdxt

)
|t=0

=

∫
Ω

Du(−h)dx+

∫
Γ

uh · ndΓ

− 1

2
√
π

(∫
Ω

(
d

dt

∫
Ωt

e−
(ξt−xt)2

4 dξt|t=0

)
dx+

∫
Γ

(∫
Ω

e−
(ξ−x)2

4 dξ

)
h · ndΓ

)
=

∫
Ω

Du(−h)dx+

∫
Γ

uh · ndΓ

− 1

2
√
π

(∫
Ω

(∫
Ω

0dξ +

∫
Γ

e−
(ξ−x)2

4 h · ndΓ

)
dx+

∫
Γ

(∫
Ω

e−
(ξ−x)2

4 dξ

)
h · ndΓ

)
=

∫
Ω

Du(−h)dx+

∫
Γ

uh · ndΓ− 1

2
√
π

(∫
Ω

∫
Γ

e−
(ξ−x)2

4 h · ndΓdx+

∫
Γ

∫
Ω

e−
(ξ−x)2

4 dξh · ndΓ

)
=

∫
Ω

Du(−h)dx+

∫
Γ

uh · ndΓ−
∫

Γ

uh · ndΓ−
∫

Γ

uh · ndΓ

=

∫
Ω

Du(−h)dx−
∫

Γ

uh · ndΓ.

Here we used Lemma 3.6 and the theorem of Fubini, which is applicable due to the smoothness and
boundedness of Ω and the integrability of the objective function. In detail, one uses the definition of the
boundary integral and concludes for each local C1,1-diffeomorphism ϕ : S → U with S ⊂ Rd−1 open and
U ⊂ Γ open that ∫

Ω

∫
Γ

e−
(ξ−x)2

4 h · ndΓdx =

∫
Ω

∫
S

e−
(ϕ(s)−x)2

4 h · n(det(DϕTDϕ))1/2dsdx

=

∫
S

∫
Ω

e−
(ϕ(s)−x)2

4 h · ndx(det(DϕTDϕ))1/2ds =

∫
Γ

∫
Ω

e−
(ξ−x)2

4 h · ndxdΓ.

Finally, we find the representation for the Eulerian derivative, which is given by

dJ(u,Ω)h = − d

dt
〈Ẽ(u, t), p〉X∗×X |t=0 +

∫
Ω

j1(u) div hdx

=

∫
Ω

((Du)h+ udiv h) dx+

∫
Γ

uh · ndΓ =

∫
Ω

(div(uh)) dx+

∫
Γ

uh · ndΓ

= 2

∫
Γ

uh · ndΓ.

20



References

[DZ11] M. C. Delfour and J.-P. Zolésio. Shapes and Geometries. SIAM, Philadelphia, second edition,
2011.

[Eva10] L. Evans. Partial Differential Equations. American Math. Soc., Providence, second edition,
2010.

[Fra97] T. Frankel. The Geometry of Physics. Cambridge University Press, 1997.

[IKPa] K. Ito, K. Kunisch, and G. Peichl. Variational Approach To Shape Derivatives.

[IKPb] K. Ito, K. Kunisch, and G. Peichl. Variational Approach To Shape Derivatives for a Class of
Bernoulli Problems.

[Jos05] J. Jost. Postmodern Analysis. Springer, Berlin, Heidelberg, third edition, 2005.
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